These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23986025)

  • 21. Construction of MnO-skeleton cross-linked by carbon nanotubes networks for efficient microwave absorption.
    Duan Y; Jiang B; Ma C; Wang X; Wang Y; Li R; Yang W; Li Y
    J Colloid Interface Sci; 2021 Nov; 602():778-788. PubMed ID: 34214732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Flexibility and Microwave Absorption Properties of HfC/SiC Nanofiber Mats.
    Hou Y; Cheng L; Zhang Y; Yang Y; Deng C; Yang Z; Chen Q; Du X; Zhao C; Zheng L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29876-29883. PubMed ID: 30085641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible SiC/Si
    Wang P; Cheng L; Zhang Y; Zhang L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28844-28858. PubMed ID: 28799331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties.
    Ruan W; Mu C; Wang B; Nie A; Zhang C; Du X; Xiang J; Wen F; Liu Z
    Nanotechnology; 2018 Oct; 29(40):405703. PubMed ID: 30010614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.
    Li D; Liao H; Kikuchi H; Liu T
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44704-44714. PubMed ID: 29199817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption.
    Ni X; Zheng Z; Hu X; Xiao X
    J Colloid Interface Sci; 2010 Jan; 341(1):18-22. PubMed ID: 19833348
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and microwave absorption characterization of SiO2 coated Fe3O4-MWCNT composites.
    Hekmatara H; Seifi M; Forooraghi K; Mirzaee S
    Phys Chem Chem Phys; 2014 Nov; 16(43):24069-75. PubMed ID: 25288483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NiFe
    Li W; Qi H; Guo F; Niu X; Du Y; Chen Y
    RSC Adv; 2019 Sep; 9(51):29959-29966. PubMed ID: 35531530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with Co
    Qin Y; Ni C; Xie X; Zhang J; Wang B; Wu H; Sun X; Kimura H; Yu R; Du W
    J Colloid Interface Sci; 2021 Nov; 602():344-354. PubMed ID: 34139532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable Fabrication of SiC@C-Fe
    Duan L; Dai X; Wu F; Xie A; Wu JA; Sun M; Xia Y
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers.
    Zhou H; Wang J; Zhuang J; Liu Q
    Nanoscale; 2013 Dec; 5(24):12502-11. PubMed ID: 24170288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hierarchical Cobalt Selenides as Highly Efficient Microwave Absorbers with Tunable Frequency Response.
    Zeng M; Cao Q; Liu J; Guo B; Hao X; Liu Q; Liu X; Sun X; Zhang X; Yu R
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1222-1231. PubMed ID: 31805765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of Microwave Absorption Performance of CoFe
    Sadeghi R; Sharifi A; Orlowska M; Huynen I
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32858924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance.
    Sun Y; Xu J; Qiao W; Xu X; Zhang W; Zhang K; Zhang X; Chen X; Zhong W; Du Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31878-31886. PubMed ID: 27805359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method.
    Liu PB; Huang Y; Sun X
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12355-60. PubMed ID: 24218981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CoxNi100-x nanoparticles encapsulated by curved graphite layers: controlled in situ metal-catalytic preparation and broadband microwave absorption.
    Wang H; Dai YY; Geng DY; Ma S; Li D; An J; He J; Liu W; Zhang ZD
    Nanoscale; 2015 Nov; 7(41):17312-9. PubMed ID: 26346583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties.
    Qi X; Hu Q; Cai H; Xie R; Bai Z; Jiang Y; Qin S; Zhong W; Du Y
    Sci Rep; 2016 Nov; 6():37972. PubMed ID: 27892515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile Synthesis and Microwave-Absorption Properties of Organic-Inorganic CoFe₂O₄/Polyaniline Nanocomposites with Embedded Structure.
    Chen P; Jiang LW; Yang SS; Chen HB; He J; Wang Y; An J
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1756-1764. PubMed ID: 31492340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Easy Method of Synthesis Co
    Bao W; Chen C; Si Z
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implantation of WSe
    Han Y; Yuan J; Zhu Y; Wang Q; Li L; Cao M
    J Colloid Interface Sci; 2022 Mar; 609():746-754. PubMed ID: 34839924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.