These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23986087)

  • 1. The effect of channel height and electrode aspect ratio on redox cycling at carbon interdigitated array nanoelectrodes confined in a microchannel.
    Heo JI; Lim Y; Shin H
    Analyst; 2013 Nov; 138(21):6404-11. PubMed ID: 23986087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of interdigitated nanoelectrodes for electrochemical DNA biosensor.
    Finot E; Bourillot E; Meunier-Prest R; Lacroute Y; Legay G; Cherkaoui-Malki M; Latruffe N; Siri O; Braunstein P; Dereux A
    Ultramicroscopy; 2003; 97(1-4):441-9. PubMed ID: 12801700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new dynamic electrochemical transduction mechanism for interdigitated array microelectrodes.
    Zhu X; Choi JW; Ahn CH
    Lab Chip; 2004 Dec; 4(6):581-7. PubMed ID: 15570369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection.
    Triroj N; Jaroenapibal P; Shi H; Yeh JI; Beresford R
    Biosens Bioelectron; 2011 Feb; 26(6):2927-33. PubMed ID: 21190835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical determination of reversible redox species at interdigitated array micro/nanoelectrodes using charge injection method.
    Zhu X; Ahn CH
    IEEE Trans Nanobioscience; 2005 Jun; 4(2):164-9. PubMed ID: 16117024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose sensor based on redox-cycling between selectively modified and unmodified combs of carbon interdigitated array nanoelectrodes.
    Sharma D; Lim Y; Lee Y; Shin H
    Anal Chim Acta; 2015 Aug; 889():194-202. PubMed ID: 26343443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical immunosensor based on a 3D carbon system consisting of a suspended mesh and substrate-bound interdigitated array nanoelectrodes for sensitive cardiac biomarker detection.
    Sharma D; Lee J; Shin H
    Biosens Bioelectron; 2018 Jun; 107():10-16. PubMed ID: 29425858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-based ultrasensitive electrochemical biosensors.
    Yang H
    Curr Opin Chem Biol; 2012 Aug; 16(3-4):422-8. PubMed ID: 22503680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system.
    Kim SK; Hesketh PJ; Li C; Thomas JH; Halsall HB; Heineman WR
    Biosens Bioelectron; 2004 Nov; 20(4):887-94. PubMed ID: 15522606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From MEMS to NEMS with carbon.
    Wang C; Madou M
    Biosens Bioelectron; 2005 Apr; 20(10):2181-7. PubMed ID: 15741096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current.
    Das J; Jo K; Lee JW; Yang H
    Anal Chem; 2007 Apr; 79(7):2790-6. PubMed ID: 17311407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a glucose sensor based on a novel nanocomposite electrode.
    Safavi A; Maleki N; Farjami E
    Biosens Bioelectron; 2009 Feb; 24(6):1655-60. PubMed ID: 18849160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular assembly of redox-conductive ferrocene-streptavidin conjugates--towards bio-electrochemical devices.
    Padeste C; Steiger B; Grubelnik A; Tiefenauer L
    Biosens Bioelectron; 2004 Oct; 20(3):545-52. PubMed ID: 15494238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical contacting of redox proteins by nanotechnological means.
    Willner B; Katz E; Willner I
    Curr Opin Biotechnol; 2006 Dec; 17(6):589-96. PubMed ID: 17084610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance sensing of allergen-antibody interaction on glassy carbon electrode modified by gold electrodeposition.
    Huang H; Ran P; Liu Z
    Bioelectrochemistry; 2007 May; 70(2):257-62. PubMed ID: 17113360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic amperometric fluctuations as a probe for dynamic adsorption in nanofluidic electrochemical systems.
    Singh PS; Chan HS; Kang S; Lemay SG
    J Am Chem Soc; 2011 Nov; 133(45):18289-95. PubMed ID: 21957965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing.
    Liu Z; Wang J; Xie D; Chen G
    Small; 2008 Apr; 4(4):462-6. PubMed ID: 18383578
    [No Abstract]   [Full Text] [Related]  

  • 19. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.
    Park S; Singh A; Kim S; Yang H
    Anal Chem; 2014 Feb; 86(3):1560-6. PubMed ID: 24428396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes.
    Urisu T; Rahman MM; Uno H; Tero R; Nonogaki Y
    Nanomedicine; 2005 Dec; 1(4):317-22. PubMed ID: 17292105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.