These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 23986291)
1. Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Lu R; Rao D; Meng Z; Zhang X; Xu G; Liu Y; Kan E; Xiao C; Deng K Phys Chem Chem Phys; 2013 Oct; 15(38):16120-6. PubMed ID: 23986291 [TBL] [Abstract][Full Text] [Related]
2. Lithium-functionalized metal-organic frameworks that show >10 wt% H2 uptake at ambient temperature. Han SS; Jung DH; Choi SH; Heo J Chemphyschem; 2013 Aug; 14(12):2698-703. PubMed ID: 23784818 [TBL] [Abstract][Full Text] [Related]
3. GCMC investigation into adamantane-based aromatic frameworks with diamond-like structure as high-capacity hydrogen storage materials. Li XD; Zhang H; Tang YJ; Cheng XL Phys Chem Chem Phys; 2012 Feb; 14(7):2391-8. PubMed ID: 22245956 [TBL] [Abstract][Full Text] [Related]
4. New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage. Guo JH; Zhang H; Miyamoto Y Phys Chem Chem Phys; 2013 Jun; 15(21):8199-207. PubMed ID: 23609981 [TBL] [Abstract][Full Text] [Related]
5. High uptakes of methane in Li-doped 3D covalent organic frameworks. Lan J; Cao D; Wang W Langmuir; 2010 Jan; 26(1):220-6. PubMed ID: 20038169 [TBL] [Abstract][Full Text] [Related]
7. High H2 uptake in Li-, Na-, K-metalated covalent organic frameworks and metal organic frameworks at 298 K. Mendoza-Cortés JL; Han SS; Goddard WA J Phys Chem A; 2012 Feb; 116(6):1621-31. PubMed ID: 22188543 [TBL] [Abstract][Full Text] [Related]
8. Ab initio study of sodium diffusion and adsorption on boron-doped graphyne as promising anode material in sodium-ion batteries. Nasrollahpour M; Vafaee M; Hosseini MR; Iravani H Phys Chem Chem Phys; 2018 Dec; 20(47):29889-29895. PubMed ID: 30468442 [TBL] [Abstract][Full Text] [Related]
9. Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal-Graphyne Framework. Kumar S; Dhilip Kumar TJ ACS Appl Mater Interfaces; 2017 Aug; 9(34):28659-28666. PubMed ID: 28766932 [TBL] [Abstract][Full Text] [Related]
10. Boron doped defective graphene as a potential anode material for Li-ion batteries. Hardikar RP; Das D; Han SS; Lee KR; Singh AK Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702 [TBL] [Abstract][Full Text] [Related]
11. Mechanochemical Synthesis of γ-Graphyne with Enhanced Lithium Storage Performance. Yang C; Li Y; Chen Y; Li Q; Wu L; Cui X Small; 2019 Feb; 15(8):e1804710. PubMed ID: 30663244 [TBL] [Abstract][Full Text] [Related]
12. Ultra-high hydrogen storage capacity of holey graphyne. Li Q; Gao Y; Zhang H; Pan H; Li QF; Zhao J Nanotechnology; 2021 Feb; ():. PubMed ID: 33561848 [TBL] [Abstract][Full Text] [Related]
13. Monolayer BC Das D; Hardikar RP; Han SS; Lee KR; Singh AK Phys Chem Chem Phys; 2017 Sep; 19(35):24230-24239. PubMed ID: 28848987 [TBL] [Abstract][Full Text] [Related]
14. Impact of position and number of boron atom substitution on hydrogen uptake capacity of Li-decorated pentalene. Tavhare P; Deshmukh A; Chaudhari A Phys Chem Chem Phys; 2016 Dec; 19(1):681-694. PubMed ID: 27918041 [TBL] [Abstract][Full Text] [Related]