These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 23986304)

  • 1. Al13Fe4 selectively catalyzes the hydrogenation of butadiene at room temperature.
    Piccolo L
    Chem Commun (Camb); 2013 Oct; 49(80):9149-51. PubMed ID: 23986304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic properties of Al
    Piccolo L; Chatelier C; De Weerd MC; Morfin F; Ledieu J; Fournée V; Gille P; Gaudry E
    Sci Technol Adv Mater; 2019; 20(1):557-567. PubMed ID: 31258823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media.
    Wang Y; Yao J; Li H; Su D; Antonietti M
    J Am Chem Soc; 2011 Mar; 133(8):2362-5. PubMed ID: 21294506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the shape of nanoparticles to control their catalytic properties: selective hydrogenation of 1,3-butadiene on Pd/Al2O3.
    Piccolo L; Valcarcel A; Bausach M; Thomazeau C; Uzio D; Berhault G
    Phys Chem Chem Phys; 2008 Sep; 10(36):5504-6. PubMed ID: 18956083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The irreversible formation of palladium carbide during hydrogenation of 1-pentyne over silica-supported palladium nanoparticles: in situ Pd K and L3 edge XAS.
    Tew MW; Nachtegaal M; Janousch M; Huthwelker T; van Bokhoven JA
    Phys Chem Chem Phys; 2012 Apr; 14(16):5761-8. PubMed ID: 22422024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved selectivity by stabilizing and exposing active phases on supported Pd nanoparticles in acetylene-selective hydrogenation.
    Shao L; Zhang B; Zhang W; Teschner D; Girgsdies F; Schlögl R; Su DS
    Chemistry; 2012 Nov; 18(47):14962-6. PubMed ID: 23090892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput kinetic study of hydrogenation over palladium nanoparticles: combination of reaction and analysis.
    Trapp O; Weber SK; Bauch S; Bäcker T; Hofstadt W; Spliethoff B
    Chemistry; 2008; 14(15):4657-66. PubMed ID: 18384020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogenation of quinolines, alkenes, and biodiesel by palladium nanoparticles supported on magnesium oxide.
    Rahi R; Fang M; Ahmed A; Sánchez-Delgado RA
    Dalton Trans; 2012 Dec; 41(48):14490-7. PubMed ID: 23073240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nonmetal catalyst for molecular hydrogen activation with comparable catalytic hydrogenation capability to noble metal catalyst.
    Li B; Xu Z
    J Am Chem Soc; 2009 Nov; 131(45):16380-2. PubMed ID: 19845383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodium-nickel bimetallic nanocatalysts: high performance of room-temperature hydrogenation.
    Duan H; Wang D; Kou Y; Li Y
    Chem Commun (Camb); 2013 Jan; 49(3):303-5. PubMed ID: 23183720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.
    Ikawa T; Fujita Y; Mizusaki T; Betsuin S; Takamatsu H; Maegawa T; Monguchi Y; Sajiki H
    Org Biomol Chem; 2012 Jan; 10(2):293-304. PubMed ID: 22068239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation.
    Teschner D; Borsodi J; Wootsch A; Révay Z; Hävecker M; Knop-Gericke A; Jackson SD; Schlögl R
    Science; 2008 Apr; 320(5872):86-9. PubMed ID: 18388290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and chemical influences on alumina-supported palladium catalysts active for the gas phase hydrogenation of crotonaldehyde.
    McInroy AR; Uhl A; Lear T; Klapötke TM; Shaikhutdinov S; Schauermann S; Rupprechter G; Freund HJ; Lennon D
    J Chem Phys; 2011 Jun; 134(21):214704. PubMed ID: 21663372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the Epitaxial Interface between Al
    Chatelier C; Anand K; Gille P; De Weerd MC; Ledieu J; Fournée V; Resta A; Vlad A; Garreau Y; Coati A; Gaudry É
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19593-19603. PubMed ID: 37018536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical approach for ambient-pressure hydrogenations using Pd on porous glass.
    Schmöger C; Stolle A; Bonrath W; Ondruschka B; Keller T; Jandt KD
    ChemSusChem; 2009; 2(1):77-82. PubMed ID: 19101941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of C8 alkyl glycosides via palladium-catalyzed telomerization of butadiene with O-benzylated aldoses.
    Bessmertnykh A; Hénin F; Serra-Muns A; Muzart J; Baillia H
    Carbohydr Res; 2006 Jan; 341(1):153-9. PubMed ID: 16297889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of metal primers on the bonding of an adhesive resin cement to noble metal ceramic alloys after thermal cycling.
    Minami H; Murahara S; Suzuki S; Tanaka T
    J Prosthet Dent; 2011 Dec; 106(6):378-85. PubMed ID: 22133395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.
    Banerjee A; Theron R; Scott RW
    ChemSusChem; 2012 Jan; 5(1):109-16. PubMed ID: 22174187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the chemistry of unsaturated C3H3 groups adsorbed on a silver surface: propargyl-allenyl-acetylide triple bond migration, self-hydrogenation, and carbon-carbon bond formation.
    Kung H; Wu SM; Wu YJ; Yang YW; Chiang CM
    J Am Chem Soc; 2008 Aug; 130(31):10263-73. PubMed ID: 18613681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon in palladium catalysts: A metastable carbide.
    Seriani N; Mittendorfer F; Kresse G
    J Chem Phys; 2010 Jan; 132(2):024711. PubMed ID: 20095698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.