These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23986359)

  • 1. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction.
    Wiater MF; Li AJ; Dinh TT; Jansen HT; Ritter S
    Am J Physiol Regul Integr Comp Physiol; 2013 Oct; 305(8):R949-60. PubMed ID: 23986359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms.
    Li AJ; Wiater MF; Oostrom MT; Smith BR; Wang Q; Dinh TT; Roberts BL; Jansen HT; Ritter S
    Am J Physiol Regul Integr Comp Physiol; 2012 Jun; 302(11):R1313-26. PubMed ID: 22492818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus.
    Wiater MF; Mukherjee S; Li AJ; Dinh TT; Rooney EM; Simasko SM; Ritter S
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1569-83. PubMed ID: 21880863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule.
    Walcott EC; Tate BA
    Physiol Behav; 1996 Nov; 60(5):1205-8. PubMed ID: 8916172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats.
    Landry GJ; Kent BA; Patton DF; Jaholkowski M; Marchant EG; Mistlberger RE
    PLoS One; 2011; 6(9):e24187. PubMed ID: 21912674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food- and light-entrained circadian rhythms in rats with hypocretin-2-saporin ablations of the lateral hypothalamus.
    Mistlberger RE; Antle MC; Kilduff TS; Jones M
    Brain Res; 2003 Aug; 980(2):161-8. PubMed ID: 12867254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 192 IgG-saporin on circadian activity rhythms, expression of P75 neurotrophin receptors, calbindin-D28K, and light-induced Fos in the suprachiasmatic nucleus in rats.
    Beaulé C; Amir S
    Exp Neurol; 2002 Aug; 176(2):377-89. PubMed ID: 12359180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat.
    Mistlberger RE; Marchant EG
    Physiol Behav; 1999 Apr; 66(2):329-35. PubMed ID: 10336162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus.
    Guilding C; Hughes AT; Brown TM; Namvar S; Piggins HD
    Mol Brain; 2009 Aug; 2():28. PubMed ID: 19712475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neonatal monosodium glutamate treatment counteracts circadian arrhythmicity induced by phase shifts of the light-dark cycle in female and male Siberian hamsters.
    Prendergast BJ; Onishi KG; Zucker I
    Brain Res; 2013 Jul; 1521():51-8. PubMed ID: 23701725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions.
    Lax P; Zamora S; Madrid JA
    Chronobiol Int; 1999 May; 16(3):281-91. PubMed ID: 10373098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forced dissociation of food- and light- entrainable circadian rhythms of rats in a skeleton photoperiod.
    Brinkhof MW; Daan S; Strubbe JH
    Physiol Behav; 1998 Nov; 65(2):225-31. PubMed ID: 9855470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat.
    Mistlberger RE; Antle MC
    Brain Res; 1999 Sep; 842(1):73-83. PubMed ID: 10526097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian feeding entrains anticipatory metabolic activity in piriform cortex and olfactory tubercle, but not in suprachiasmatic nucleus.
    Olivo D; Caba M; Gonzalez-Lima F; Vázquez A; Corona-Morales A
    Brain Res; 2014 Dec; 1592():11-21. PubMed ID: 25281805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS; Yamazaki S
    Physiol Behav; 2014 Apr; 128():92-8. PubMed ID: 24530262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of food-entrained circadian rhythms in rats during long-term exposure to constant light.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Chronobiol Int; 1990; 7(5-6):383-91. PubMed ID: 2097071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between feeding- and light-entrainable circadian pacemakers in the rat.
    Stephan FK
    Physiol Behav; 1986 Oct; 38(4):537-44. PubMed ID: 3823166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.