BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23986448)

  • 1. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45.
    Ishizaki Y; Hayashi C; Inoue K; Igarashi M; Takahashi Y; Pujari V; Crick DC; Brennan PJ; Nomoto A
    J Biol Chem; 2013 Oct; 288(42):30309-30319. PubMed ID: 23986448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and biological activity of analogs of CPZEN-45, a novel antituberculosis drug.
    Ishizaki Y; Takahashi Y; Kimura T; Inoue M; Hayashi C; Igarashi M
    J Antibiot (Tokyo); 2019 Dec; 72(12):970-980. PubMed ID: 31471594
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Huszár S; Singh V; Polčicová A; Baráth P; Barrio MB; Lagrange S; Leblanc V; Nacy CA; Mizrahi V; Mikušová K
    Antimicrob Agents Chemother; 2017 Nov; 61(11):. PubMed ID: 28874370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis.
    Jin Y; Xin Y; Zhang W; Ma Y
    FEMS Microbiol Lett; 2010 Sep; 310(1):54-61. PubMed ID: 20637039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of novel antimycobacterial WecA inhibitors.
    Mitachi K; Siricilla S; Yang D; Kong Y; Skorupinska-Tudek K; Swiezewska E; Franzblau SG; Kurosu M
    Anal Biochem; 2016 Nov; 512():78-90. PubMed ID: 27530653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caprazamycins: Promising lead structures acting on a novel antibacterial target MraY.
    Patel B; Ryan P; Makwana V; Zunk M; Rudrawar S; Grant G
    Eur J Med Chem; 2019 Jun; 171():462-474. PubMed ID: 30933853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caprazamycins: Biosynthesis and structure activity relationship studies.
    Wiker F; Hauck N; Grond S; Gust B
    Int J Med Microbiol; 2019 Jul; 309(5):319-324. PubMed ID: 31138496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168.
    Soldo B; Lazarevic V; Karamata D
    Microbiology (Reading); 2002 Jul; 148(Pt 7):2079-2087. PubMed ID: 12101296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis.
    Salomon JJ; Galeron P; Schulte N; Morow PR; Severynse-Stevens D; Huwer H; Daum N; Lehr CM; Hickey AJ; Ehrhardt C
    Ther Deliv; 2013 Aug; 4(8):915-23. PubMed ID: 23919471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic mechanism of MraY and WecA, two paralogues of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily.
    Al-Dabbagh B; Olatunji S; Crouvoisier M; El Ghachi M; Blanot D; Mengin-Lecreulx D; Bouhss A
    Biochimie; 2016 Aug; 127():249-57. PubMed ID: 27312048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site mapping of MraY, a member of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, catalyzing the first membrane step of peptidoglycan biosynthesis.
    Al-Dabbagh B; Henry X; El Ghachi M; Auger G; Blanot D; Parquet C; Mengin-Lecreulx D; Bouhss A
    Biochemistry; 2008 Aug; 47(34):8919-28. PubMed ID: 18672909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4'-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo.
    Leblanc C; Prudhomme T; Tabouret G; Ray A; Burbaud S; Cabantous S; Mourey L; Guilhot C; Chalut C
    PLoS Pathog; 2012 Dec; 8(12):e1003097. PubMed ID: 23308068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of N-acetylglucosamine-1-phosphate transferase (WecA) enhanced the sensitivity of Mycobacterium smegmatis against rifampin.
    Xu L; Qian L; Kang J; Sha S; Xin Y; Lu S; Ma Y
    J Appl Microbiol; 2016 Oct; 121(4):966-72. PubMed ID: 27420559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liposidomycin, the first reported nucleoside antibiotic inhibitor of peptidoglycan biosynthesis translocase I: The discovery of liposidomycin and related compounds with a perspective on their application to new antibiotics.
    Kimura KI
    J Antibiot (Tokyo); 2019 Dec; 72(12):877-889. PubMed ID: 31582803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis.
    Chung BC; Mashalidis EH; Tanino T; Kim M; Matsuda A; Hong J; Ichikawa S; Lee SY
    Nature; 2016 May; 533(7604):557-560. PubMed ID: 27088606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for selective inhibition of antibacterial target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis.
    Hering J; Dunevall E; Ek M; Brändén G
    Drug Discov Today; 2018 Jul; 23(7):1426-1435. PubMed ID: 29778697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of phospho-MurNAc-pentapeptide translocase (MraY) by nucleoside natural product antibiotics, bacteriophage ϕX174 lysis protein E, and cationic antibacterial peptides.
    Bugg TD; Rodolis MT; Mihalyi A; Jamshidi S
    Bioorg Med Chem; 2016 Dec; 24(24):6340-6347. PubMed ID: 27021004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide.
    Lehrer J; Vigeant KA; Tatar LD; Valvano MA
    J Bacteriol; 2007 Apr; 189(7):2618-28. PubMed ID: 17237164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel semisynthetic antibiotics from caprazamycins A-G: caprazene derivatives and their antibacterial activity.
    Takahashi Y; Igarashi M; Miyake T; Soutome H; Ishikawa K; Komatsuki Y; Koyama Y; Nakagawa N; Hattori S; Inoue K; Doi N; Akamatsu Y
    J Antibiot (Tokyo); 2013 Mar; 66(3):171-8. PubMed ID: 23532021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of action of nucleoside antibacterial natural product antibiotics.
    Bugg TDH; Kerr RV
    J Antibiot (Tokyo); 2019 Dec; 72(12):865-876. PubMed ID: 31471595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.