BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 23986495)

  • 1. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex.
    Baird L; Llères D; Swift S; Dinkova-Kostova AT
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15259-64. PubMed ID: 23986495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Keap1-Nrf2 interactions in single live cells.
    Baird L; Swift S; Llères D; Dinkova-Kostova AT
    Biotechnol Adv; 2014 Nov; 32(6):1133-44. PubMed ID: 24681086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Changes in Keap1-Nrf2 Protein Complex Conformation in Individual Cells by FLIM-FRET.
    Dikovskaya D; Dinkova-Kostova AT
    Curr Protoc Toxicol; 2020 Sep; 85(1):e96. PubMed ID: 32786061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis.
    Dikovskaya D; Appleton PL; Bento-Pereira C; Dinkova-Kostova AT
    Chem Res Toxicol; 2019 Mar; 32(3):500-512. PubMed ID: 30793592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics.
    Dinkova-Kostova AT; Baird L; Holmström KM; Meyer CJ; Abramov AY
    Biochem Soc Trans; 2015 Aug; 43(4):602-10. PubMed ID: 26551700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains.
    Ogura T; Tong KI; Mio K; Maruyama Y; Kurokawa H; Sato C; Yamamoto M
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2842-7. PubMed ID: 20133743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.
    Dinkova-Kostova AT; Kostov RV; Canning P
    Arch Biochem Biophys; 2017 Mar; 617():84-93. PubMed ID: 27497696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex.
    McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2006 Aug; 281(34):24756-68. PubMed ID: 16790436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keap1 degradation by autophagy for the maintenance of redox homeostasis.
    Taguchi K; Fujikawa N; Komatsu M; Ishii T; Unno M; Akaike T; Motohashi H; Yamamoto M
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13561-6. PubMed ID: 22872865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-based regulation of the CUL3 adaptor protein Keap1.
    Sekhar KR; Rachakonda G; Freeman ML
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1.
    Padmanabhan B; Tong KI; Kobayashi A; Yamamoto M; Yokoyama S
    J Synchrotron Radiat; 2008 May; 15(Pt 3):273-6. PubMed ID: 18421157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1.
    Komatsu M; Kurokawa H; Waguri S; Taguchi K; Kobayashi A; Ichimura Y; Sou YS; Ueno I; Sakamoto A; Tong KI; Kim M; Nishito Y; Iemura S; Natsume T; Ueno T; Kominami E; Motohashi H; Tanaka K; Yamamoto M
    Nat Cell Biol; 2010 Mar; 12(3):213-23. PubMed ID: 20173742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy.
    Ichimura Y; Waguri S; Sou YS; Kageyama S; Hasegawa J; Ishimura R; Saito T; Yang Y; Kouno T; Fukutomi T; Hoshii T; Hirao A; Takagi K; Mizushima T; Motohashi H; Lee MS; Yoshimori T; Tanaka K; Yamamoto M; Komatsu M
    Mol Cell; 2013 Sep; 51(5):618-31. PubMed ID: 24011591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a steady-state FRET-based assay to identify inhibitors of the Keap1-Nrf2 protein-protein interaction.
    Schaap M; Hancock R; Wilderspin A; Wells G
    Protein Sci; 2013 Dec; 22(12):1812-9. PubMed ID: 24130096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2.
    He X; Ma Q
    J Pharmacol Exp Ther; 2010 Jan; 332(1):66-75. PubMed ID: 19808700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response.
    Sun Z; Wu T; Zhao F; Lau A; Birch CM; Zhang DD
    Mol Cell Biol; 2011 May; 31(9):1800-11. PubMed ID: 21383067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity.
    Yamamoto T; Suzuki T; Kobayashi A; Wakabayashi J; Maher J; Motohashi H; Yamamoto M
    Mol Cell Biol; 2008 Apr; 28(8):2758-70. PubMed ID: 18268004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.