These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23986660)

  • 1. Universal organization of resting brain activity at the thermodynamic critical point.
    Yu S; Yang H; Shriki O; Plenz D
    Front Syst Neurosci; 2013; 7():42. PubMed ID: 23986660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Critical Dynamics in Stimulus-Evoked Activity of the Human Brain and Its Relation to Spontaneous Resting-State Activity.
    Arviv O; Goldstein A; Shriki O
    J Neurosci; 2015 Oct; 35(41):13927-42. PubMed ID: 26468194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship of fast- and slow-timescale neuronal dynamics in human MEG and SEEG.
    Zhigalov A; Arnulfo G; Nobili L; Palva S; Palva JM
    J Neurosci; 2015 Apr; 35(13):5385-96. PubMed ID: 25834062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal avalanches in the resting MEG of the human brain.
    Shriki O; Alstott J; Carver F; Holroyd T; Henson RN; Smith ML; Coppola R; Bullmore E; Plenz D
    J Neurosci; 2013 Apr; 33(16):7079-90. PubMed ID: 23595765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-regulated critical brain dynamics originate from high frequency-band activity in the MEG.
    Dürschmid S; Reichert C; Walter N; Hinrichs H; Heinze HJ; Ohl FW; Tononi G; Deliano M
    PLoS One; 2020; 15(6):e0233589. PubMed ID: 32525940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal Avalanches to Study the Coordination of Large-Scale Brain Activity: Application to Rett Syndrome.
    Rucco R; Bernardo P; Lardone A; Baselice F; Pesoli M; Polverino A; Bravaccio C; Granata C; Mandolesi L; Sorrentino G; Sorrentino P
    Front Psychol; 2020; 11():550749. PubMed ID: 33192799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws.
    Palva JM; Zhigalov A; Hirvonen J; Korhonen O; Linkenkaer-Hansen K; Palva S
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3585-90. PubMed ID: 23401536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.
    Ribeiro TL; Copelli M; Caixeta F; Belchior H; Chialvo DR; Nicolelis MA; Ribeiro S
    PLoS One; 2010 Nov; 5(11):e14129. PubMed ID: 21152422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation.
    Mariani B; Nicoletti G; Bisio M; Maschietto M; Oboe R; Leparulo A; Suweis S; Vassanelli S
    Front Syst Neurosci; 2021; 15():709677. PubMed ID: 34526881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality.
    Shew WL; Yang H; Petermann T; Roy R; Plenz D
    J Neurosci; 2009 Dec; 29(49):15595-600. PubMed ID: 20007483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical analyses support power law distributions found in neuronal avalanches.
    Klaus A; Yu S; Plenz D
    PLoS One; 2011; 6(5):e19779. PubMed ID: 21720544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-electrode array recordings of neuronal avalanches in organotypic cultures.
    Plenz D; Stewart CV; Shew W; Yang H; Klaus A; Bellay T
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21841767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avalanche dynamics of human brain oscillations: relation to critical branching processes and temporal correlations.
    Poil SS; van Ooyen A; Linkenkaer-Hansen K
    Hum Brain Mapp; 2008 Jul; 29(7):770-7. PubMed ID: 18454457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-specific dynamics of high-amplitude bursts in EEG capture behaviorally meaningful variability.
    Bansal K; Garcia JO; Lauharatanahirun N; Muldoon SF; Sajda P; Vettel JM
    Neuroimage; 2021 Nov; 241():118425. PubMed ID: 34303795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term stability of avalanche scaling and integrative network organization in prefrontal and premotor cortex.
    Miller SR; Yu S; Pajevic S; Plenz D
    Netw Neurosci; 2021; 5(2):505-526. PubMed ID: 34189375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of neural population activity toward self-organized criticality.
    Yada Y; Mita T; Sanada A; Yano R; Kanzaki R; Bakkum DJ; Hierlemann A; Takahashi H
    Neuroscience; 2017 Feb; 343():55-65. PubMed ID: 27915209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep.
    Dehghani N; Hatsopoulos NG; Haga ZD; Parker RA; Greger B; Halgren E; Cash SS; Destexhe A
    Front Physiol; 2012; 3():302. PubMed ID: 22934053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal avalanches and time-frequency representations in stimulus-evoked activity.
    Arviv O; Goldstein A; Shriki O
    Sci Rep; 2019 Sep; 9(1):13319. PubMed ID: 31527749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deviations from Critical Dynamics in Interictal Epileptiform Activity.
    Arviv O; Medvedovsky M; Sheintuch L; Goldstein A; Shriki O
    J Neurosci; 2016 Nov; 36(48):12276-12292. PubMed ID: 27903734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural field theory of neural avalanche exponents.
    Robinson PA
    Biol Cybern; 2021 Jun; 115(3):237-243. PubMed ID: 33939016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.