BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23986676)

  • 1. A standardized motor imagery introduction program (MIIP) for neuro-rehabilitation: development and evaluation.
    Wondrusch C; Schuster-Amft C
    Front Hum Neurosci; 2013; 7():477. PubMed ID: 23986676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A different point of view: the evaluation of motor imagery perspectives in patients with sensorimotor impairments in a longitudinal study.
    Gäumann S; Gerber RS; Suica Z; Wandel J; Schuster-Amft C
    BMC Neurol; 2021 Jul; 21(1):297. PubMed ID: 34315411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two assessments to evaluate imagery ability: translation, test-retest reliability and concurrent validity of the German KVIQ and Imaprax.
    Schuster C; Lussi A; Wirth B; Ettlin T
    BMC Med Res Methodol; 2012 Aug; 12():127. PubMed ID: 22905778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle Activation During Grasping With and Without Motor Imagery in Healthy Volunteers and Patients After Stroke or With Parkinson's Disease.
    Kobelt M; Wirth B; Schuster-Amft C
    Front Psychol; 2018; 9():597. PubMed ID: 29740377
    [No Abstract]   [Full Text] [Related]  

  • 5. Specific and general adaptations following motor imagery practice focused on muscle strength in total knee arthroplasty rehabilitation: A randomized controlled trial.
    Paravlic AH; Pisot R; Marusic U
    PLoS One; 2019; 14(8):e0221089. PubMed ID: 31412056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining motor imagery with action observation training does not lead to a greater autonomic nervous system response than motor imagery alone during simple and functional movements: a randomized controlled trial.
    Cuenca-Martínez F; Suso-Martí L; Grande-Alonso M; Paris-Alemany A; La Touche R
    PeerJ; 2018; 6():e5142. PubMed ID: 30002975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of motor imagery and effects of activating and relaxing practice on autonomic functions in healthy young adults: A randomised, controlled, assessor-blinded, pilot trial.
    Kahraman T; Kaya DO; Isik T; Gultekin SC; Seebacher B
    PLoS One; 2021; 16(7):e0254666. PubMed ID: 34255812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of embedded and added motor imagery training in patients after stroke: study protocol of a randomised controlled pilot trial using a mixed methods approach.
    Schuster C; Butler J; Andrews B; Kischka U; Ettlin T
    Trials; 2009 Oct; 10():97. PubMed ID: 19849835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of embedded and added motor imagery training in patients after stroke: results of a randomised controlled pilot trial.
    Schuster C; Butler J; Andrews B; Kischka U; Ettlin T
    Trials; 2012 Jan; 13():11. PubMed ID: 22269834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor imagery in stroke patients, or plegic patients with spinal cord or peripheral diseases.
    Dettmers C; Benz M; Liepert J; Rockstroh B
    Acta Neurol Scand; 2012 Oct; 126(4):238-47. PubMed ID: 22587653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relation between cognitive and motor dysfunction and motor imagery ability in patients with multiple sclerosis.
    Heremans E; D'hooge AM; De Bondt S; Helsen W; Feys P
    Mult Scler; 2012 Sep; 18(9):1303-9. PubMed ID: 22389414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motor imagery ability in patients with traumatic brain injury.
    Oostra KM; Vereecke A; Jones K; Vanderstraeten G; Vingerhoets G
    Arch Phys Med Rehabil; 2012 May; 93(5):828-33. PubMed ID: 22365480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descriptive pilot study of vividness and temporal equivalence during motor imagery training after quadriplegia.
    Mateo S; Reilly KT; Collet C; Rode G
    Ann Phys Rehabil Med; 2018 Sep; 61(5):300-308. PubMed ID: 29944923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors.
    Barria P; Pino A; Tovar N; Gomez-Vargas D; Baleta K; Díaz CAR; Múnera M; Cifuentes CA
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The challenge of measuring physiological parameters during motor imagery engagement in patients after a stroke.
    Gäumann S; Aksöz EA; Behrendt F; Wandel J; Cappelletti L; Krug A; Mörder D; Bill A; Parmar K; Gerth HU; Bonati LH; Schuster-Amft C
    Front Neurosci; 2023; 17():1225440. PubMed ID: 37583419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a single mental chronometry training session in subacute stroke patients - a randomized controlled trial.
    Liepert J; Stürner J; Büsching I; Sehle A; Schoenfeld MA
    BMC Sports Sci Med Rehabil; 2020; 12():66. PubMed ID: 33101692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Analysis of Eye-Tracking Information for Motor Imagery Assessments.
    Lanata A; Sebastiani L; Di Gruttola F; Di Modica S; Scilingo EP; Greco A
    Front Neurosci; 2019; 13():1431. PubMed ID: 32009892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific Brain Lesions Impair Explicit Motor Imagery Ability: A Systematic Review of the Evidence.
    McInnes K; Friesen C; Boe S
    Arch Phys Med Rehabil; 2016 Mar; 97(3):478-489.e1. PubMed ID: 26254950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of imagery capacity in motor performance improvement.
    Ruffino C; Papaxanthis C; Lebon F
    Exp Brain Res; 2017 Oct; 235(10):3049-3057. PubMed ID: 28733754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study.
    Prasad G; Herman P; Coyle D; McDonough S; Crosbie J
    J Neuroeng Rehabil; 2010 Dec; 7():60. PubMed ID: 21156054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.