These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 23986766)

  • 1. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance.
    Bokszczanin KL; ; Fragkostefanakis S
    Front Plant Sci; 2013; 4():315. PubMed ID: 23986766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights into mechanisms underlying thermo-tolerance in tomato.
    Singh AK; Mishra P; Kashyap SP; Karkute SG; Singh PM; Rai N; Bahadur A; Behera TK
    Front Plant Sci; 2022; 13():1040532. PubMed ID: 36388532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat stress response mechanisms in pollen development.
    Chaturvedi P; Wiese AJ; Ghatak A; Záveská Drábková L; Weckwerth W; Honys D
    New Phytol; 2021 Jul; 231(2):571-585. PubMed ID: 33818773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermosensitivity of pollen: a molecular perspective.
    Goel K; Kundu P; Sharma P; Zinta G
    Plant Cell Rep; 2023 May; 42(5):843-857. PubMed ID: 37029819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat stress regimes for the investigation of pollen thermotolerance in crop plants.
    Mesihovic A; Iannacone R; Firon N; Fragkostefanakis S
    Plant Reprod; 2016 Jun; 29(1-2):93-105. PubMed ID: 27016360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives.
    Haider S; Iqbal J; Naseer S; Yaseen T; Shaukat M; Bibi H; Ahmad Y; Daud H; Abbasi NL; Mahmood T
    Plant Cell Rep; 2021 Dec; 40(12):2247-2271. PubMed ID: 33890138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic events in plant male germ cell heat stress responses.
    Chen Y; Müller F; Rieu I; Winter P
    Plant Reprod; 2016 Jun; 29(1-2):21-9. PubMed ID: 26639000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Mechanisms of Heat Priming and Thermotolerance in Tobacco Pollen.
    Mareri L; Faleri C; Aloisi I; Parrotta L; Del Duca S; Cai G
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproductive heat tolerance in a Mojave Desert annual plant, Trianthema portulacastrum.
    Branch HA; Sage RF
    Am J Bot; 2018 Dec; 105(12):2018-2024. PubMed ID: 30508226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by inhibiting the unfolded protein response and promoting cell death.
    Lu S; Zhu T; Wang Z; Luo L; Wang S; Lu M; Cui Y; Zou B; Hua J
    Mol Plant; 2021 Feb; 14(2):267-284. PubMed ID: 33221412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains.
    Jegadeesan S; Chaturvedi P; Ghatak A; Pressman E; Meir S; Faigenboim A; Rutley N; Beery A; Harel A; Weckwerth W; Firon N
    Front Plant Sci; 2018; 9():1558. PubMed ID: 30483278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature susceptibility of sexual reproduction in crop plants.
    Lohani N; Singh MB; Bhalla PL
    J Exp Bot; 2020 Jan; 71(2):555-568. PubMed ID: 31560053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective.
    Chaudhary S; Devi P; HanumanthaRao B; Jha UC; Sharma KD; Prasad PVV; Kumar S; Siddique KHM; Nayyar H
    Front Plant Sci; 2022; 13():878498. PubMed ID: 35837452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrasting processing tomato cultivars unlink yield and pollen viability under heat stress.
    Miller G; Beery A; Singh PK; Wang F; Zelingher R; Motenko E; Lieberman-Lazarovich M
    AoB Plants; 2021 Aug; 13(4):plab046. PubMed ID: 34394907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant heat stress: Concepts directing future research.
    Jagadish SVK; Way DA; Sharkey TD
    Plant Cell Environ; 2021 Jul; 44(7):1992-2005. PubMed ID: 33745205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.
    Dong X; Yi H; Lee J; Nou IS; Han CT; Hur Y
    PLoS One; 2015; 10(6):e0130451. PubMed ID: 26102990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolic basis of pollen thermo-tolerance: perspectives for breeding.
    Paupière MJ; van Heusden AW; Bovy AG
    Metabolites; 2014 Sep; 4(4):889-920. PubMed ID: 25271355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination.
    Flores-Rentería L; Whipple AV; Benally GJ; Patterson A; Canyon B; Gehring CA
    Front Plant Sci; 2018; 9():536. PubMed ID: 29760715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Reproductive Thermotolerance of the Tomato
    Rutley N; Miller G; Wang F; Harper JF; Miller G; Lieberman-Lazarovich M
    Front Plant Sci; 2021; 12():672368. PubMed ID: 34093629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.