BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 23986815)

  • 21. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes.
    Ji C; Tang M; Zeidler C; Höhfeld J; Johnson GV
    Autophagy; 2019 Jul; 15(7):1199-1213. PubMed ID: 30744518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maintaining proteostasis under mechanical stress.
    Höhfeld J; Benzing T; Bloch W; Fürst DO; Gehlert S; Hesse M; Hoffmann B; Hoppe T; Huesgen PF; Köhn M; Kolanus W; Merkel R; Niessen CM; Pokrzywa W; Rinschen MM; Wachten D; Warscheid B
    EMBO Rep; 2021 Aug; 22(8):e52507. PubMed ID: 34309183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP.
    Kundrat L; Regan L
    Biochemistry; 2010 Sep; 49(35):7428-38. PubMed ID: 20704274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein Quality Control by Molecular Chaperones in Neurodegeneration.
    Ciechanover A; Kwon YT
    Front Neurosci; 2017; 11():185. PubMed ID: 28428740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequestosome-1 (p62) expression reveals chaperone-assisted selective autophagy in immune-mediated necrotizing myopathies.
    Fischer N; Preuße C; Radke J; Pehl D; Allenbach Y; Schneider U; Feist E; von Casteleyn V; Hahn K; Ruck T; Meuth SG; Goebel HH; Graf R; Mammen A; Benveniste O; Stenzel W
    Brain Pathol; 2020 Mar; 30(2):261-271. PubMed ID: 31376301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BAG3 expression in glioblastoma cells promotes accumulation of ubiquitinated clients in an Hsp70-dependent manner.
    Gentilella A; Khalili K
    J Biol Chem; 2011 Mar; 286(11):9205-15. PubMed ID: 21233200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hsp90 Chaperones Bluetongue Virus Proteins and Prevents Proteasomal Degradation.
    Mohl BP; Roy P
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31375577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of chaperone-assisted ubiquitylation.
    Dreiseidler M; Dick N; Höhfeld J
    Methods Mol Biol; 2012; 832():473-87. PubMed ID: 22350907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BAG3 Pro209 mutants associated with myopathy and neuropathy relocate chaperones of the CASA-complex to aggresomes.
    Adriaenssens E; Tedesco B; Mediani L; Asselbergh B; Crippa V; Antoniani F; Carra S; Poletti A; Timmerman V
    Sci Rep; 2020 May; 10(1):8755. PubMed ID: 32472079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CHIP: a co-chaperone for degradation by the proteasome.
    Edkins AL
    Subcell Biochem; 2015; 78():219-42. PubMed ID: 25487024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome.
    Abildgaard AB; Gersing SK; Larsen-Ledet S; Nielsen SV; Stein A; Lindorff-Larsen K; Hartmann-Petersen R
    Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32759676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Hsp70-Hsp90 Chaperone Cascade in Protein Folding.
    Morán Luengo T; Mayer MP; Rüdiger SGD
    Trends Cell Biol; 2019 Feb; 29(2):164-177. PubMed ID: 30502916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress.
    Chakraborty D; Felzen V; Hiebel C; Stürner E; Perumal N; Manicam C; Sehn E; Grus F; Wolfrum U; Behl C
    Redox Biol; 2019 Jun; 24():101181. PubMed ID: 30959460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases.
    Rusmini P; Cristofani R; Galbiati M; Cicardi ME; Meroni M; Ferrari V; Vezzoli G; Tedesco B; Messi E; Piccolella M; Carra S; Crippa V; Poletti A
    Front Mol Neurosci; 2017; 10():176. PubMed ID: 28680390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organismal Protein Homeostasis Mechanisms.
    Hoppe T; Cohen E
    Genetics; 2020 Aug; 215(4):889-901. PubMed ID: 32759342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial proteostasis balances energy and chaperone utilization efficiently.
    Santra M; Farrell DW; Dill KA
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):E2654-E2661. PubMed ID: 28292901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular chaperone functions in protein folding and proteostasis.
    Kim YE; Hipp MS; Bracher A; Hayer-Hartl M; Hartl FU
    Annu Rev Biochem; 2013; 82():323-55. PubMed ID: 23746257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redefining Molecular Chaperones as Chaotropes.
    Macošek J; Mas G; Hiller S
    Front Mol Biosci; 2021; 8():683132. PubMed ID: 34195228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homeostatic Roles of the Proteostasis Network in Dendrites.
    Lottes EN; Cox DN
    Front Cell Neurosci; 2020; 14():264. PubMed ID: 33013325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.