These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 23987340)

  • 61. Microfluidic synthesis of chitosan-based nanoparticles for fuel cell applications.
    Majedi FS; Hasani-Sadrabadi MM; Emami SH; Taghipoor M; Dashtimoghadam E; Bertsch A; Moaddel H; Renaud P
    Chem Commun (Camb); 2012 Aug; 48(62):7744-6. PubMed ID: 22760418
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A graphene oxide polymer brush based cross-linked nanocomposite proton exchange membrane for direct methanol fuel cells.
    Yang T; Li Z; Lyu H; Zheng J; Liu J; Liu F; Zhang Z; Rao H
    RSC Adv; 2018 Apr; 8(28):15740-15753. PubMed ID: 35539468
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Utilization of mesoporous phosphotungstic acid in nanocellulose membranes for direct methanol fuel cells.
    Priyangga A; Atmaja L; Santoso M; Jaafar J; Ilbeygi H
    RSC Adv; 2022 May; 12(23):14411-14421. PubMed ID: 35702242
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Design of efficient methanol impermeable membranes for fuel cell applications.
    Lufrano F; Baglio V; Di Blasi O; Staiti P; Antonucci V; Aricò AS
    Phys Chem Chem Phys; 2012 Feb; 14(8):2718-26. PubMed ID: 22274611
    [TBL] [Abstract][Full Text] [Related]  

  • 65. SPEEK-zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation.
    Tripathi BP; Shahi VK
    J Colloid Interface Sci; 2007 Dec; 316(2):612-21. PubMed ID: 17888445
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Promising aquivion composite membranes based on fluoroalkyl zirconium phosphate for fuel cell applications.
    Donnadio A; Pica M; Subianto S; Jones DJ; Cojocaru P; Casciola M
    ChemSusChem; 2014 Aug; 7(8):2176-84. PubMed ID: 24975037
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Promising TiOSO₄ composite polybenzimidazole-based membranes for high temperature PEMFCs.
    Lobato J; Cañizares P; Rodrigo MA; Ubeda D; Pinar FJ
    ChemSusChem; 2011 Oct; 4(10):1489-97. PubMed ID: 21916013
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Layer-by-layer self-assembly of PDDA/PWA-Nafion composite membranes for direct methanol fuel cells.
    Yang M; Lu S; Lu J; Jiang SP; Xiang Y
    Chem Commun (Camb); 2010 Mar; 46(9):1434-6. PubMed ID: 20162139
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phosphoric acid functionalized pre-sintered meso-silica for high temperature proton exchange membrane fuel cells.
    Zeng J; He B; Lamb K; De Marco R; Shen PK; Jiang SP
    Chem Commun (Camb); 2013 May; 49(41):4655-7. PubMed ID: 23579968
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures.
    Prasad NS; Moulik S; Bohra S; Rani KY; Sridhar S
    Carbohydr Polym; 2016 Jan; 136():1170-81. PubMed ID: 26572460
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Effect of Sulfated Zirconia and Zirconium Phosphate Nanocomposite Membranes on Fuel-Cell Efficiency.
    Sigwadi R; Mokrani T; Msomi P; Nemavhola F
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054671
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.
    Zamora H; Plaza J; Cañizares P; Lobato J; Rodrigo MA
    ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane.
    Ma L; Li J; Xiong J; Xu G; Liu Z; Cai W
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966012
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.
    Gadim TD; Figueiredo AG; Rosero-Navarro NC; Vilela C; Gamelas JA; Barros-Timmons A; Neto CP; Silvestre AJ; Freire CS; Figueiredo FM
    ACS Appl Mater Interfaces; 2014 May; 6(10):7864-75. PubMed ID: 24731218
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Influence of Pectin as a green polymer electrolyte on the transport properties of Chitosan-Pectin membranes.
    Pasini Cabello SD; Ochoa NA; Takara EA; Mollá S; Compañ V
    Carbohydr Polym; 2017 Feb; 157():1759-1768. PubMed ID: 27987892
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.
    Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW
    Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Aligned electrospun nanofiber composite membranes for fuel cell electrolytes.
    Tamura T; Kawakami H
    Nano Lett; 2010 Apr; 10(4):1324-8. PubMed ID: 20345114
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells.
    Palanisamy G; Oh TH; Thangarasu S
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771960
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A composite membrane of caesium salt of heteropolyacids/quaternary Diazabicyclo-octane polysulfone with poly (tetrafluoroethylene) for intermediate temperature fuel cells.
    Xu C; Wang X; Wu X; Cao Y; Scott K
    Membranes (Basel); 2012 Jul; 2(3):384-94. PubMed ID: 24958287
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly proton-selective biopolymer layer-coated ion-exchange membrane for direct methanol fuel cells.
    Nataraj SK; Wang CH; Huang HC; Du HY; Wang SF; Chen YC; Chen LC; Chen KH
    ChemSusChem; 2012 Feb; 5(2):392-5. PubMed ID: 22308103
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.