BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23987383)

  • 1. Formation of nanometal particles in the dialdehyde starch matrix.
    Khachatryan K; Khachatryan G; Fiedorowicz M; Para A; Tomasik P
    Carbohydr Polym; 2013 Oct; 98(1):568-73. PubMed ID: 23987383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films.
    Khachatryan G; Khachatryan K; Grzyb J; Fiedorowicz M
    Carbohydr Polym; 2016 Oct; 151():452-457. PubMed ID: 27474588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological characteristics and morphology of dialdehyde starch/meat composites during heating.
    Chiang PY; Li JY; Chen ML
    J Food Sci; 2009 Mar; 74(2):E112-9. PubMed ID: 19323739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Physicochemical Properties of Silver and Gold Nanocomposites Based on Potato Starch in Distilled and Cold Plasma-Treated Water.
    Janik M; Khachatryan K; Khachatryan G; Krystyjan M; Oszczęda Z
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical Reactions in Dialdehyde Starch.
    Ziegler-Borowska M; Wegrzynowska-Drzymalska K; Chelminiak-Dudkiewicz D; Kowalonek J; Kaczmarek H
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30567390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dialdehyde starch on calcification of collagen matrix.
    Liu Y; Acharya G; Lee CH
    J Biomed Mater Res A; 2011 Dec; 99(3):485-92. PubMed ID: 21887744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites.
    Shervani Z; Yamamoto Y
    Carbohydr Res; 2011 Apr; 346(5):651-8. PubMed ID: 21349499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starch-directed green synthesis, characterization and morphology of silver nanoparticles.
    Khan Z; Singh T; Hussain JI; Obaid AY; Al-Thabaiti SA; El-Mossalamy EH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():578-84. PubMed ID: 23104028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes.
    Fanta GF; Kenar JA; Felker FC; Byars JA
    Carbohydr Polym; 2013 Jan; 92(1):260-8. PubMed ID: 23218293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coenzyme based synthesis of silver nanocrystals.
    Tanvir S; Oudet F; Pulvin S; Anderson WA
    Enzyme Microb Technol; 2012 Sep; 51(4):231-6. PubMed ID: 22883558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application.
    Xia B; He F; Li L
    Langmuir; 2013 Apr; 29(15):4901-7. PubMed ID: 23517530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.
    Zuo Y; Liu W; Xiao J; Zhao X; Zhu Y; Wu Y
    Int J Biol Macromol; 2017 Oct; 103():1257-1264. PubMed ID: 28587965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial activity of nanosilver ions and particles.
    Sotiriou GA; Pratsinis SE
    Environ Sci Technol; 2010 Jul; 44(14):5649-54. PubMed ID: 20583805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes.
    Swain SK; Pradhan AK; Sahu HS
    Carbohydr Polym; 2013 Apr; 94(1):663-8. PubMed ID: 23544588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach.
    Tamuly C; Hazarika M; Borah SCh; Das MR; Boruah MP
    Colloids Surf B Biointerfaces; 2013 Feb; 102():627-34. PubMed ID: 23107941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of hybrid hydrogel containing Ag nanoparticles by a green in situ reduction method.
    Xia B; Cui Q; He F; Li L
    Langmuir; 2012 Jul; 28(30):11188-94. PubMed ID: 22770209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical characterization of the polysaccharide from Bletilla striata: effect of drying method.
    Kong L; Yu L; Feng T; Yin X; Liu T; Dong L
    Carbohydr Polym; 2015 Jul; 125():1-8. PubMed ID: 25857953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Starch nanocrystals with large chain surface modifications.
    Thielemans W; Belgacem MN; Dufresne A
    Langmuir; 2006 May; 22(10):4804-10. PubMed ID: 16649799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium).
    Vinod VT; Saravanan P; Sreedhar B; Devi DK; Sashidhar RB
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):291-8. PubMed ID: 21185161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a low glycemic maize starch: preparation and characterization.
    Han XZ; Ao Z; Janaswamy S; Jane JL; Chandrasekaran R; Hamaker BR
    Biomacromolecules; 2006 Apr; 7(4):1162-8. PubMed ID: 16602734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.