These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23987448)

  • 1. Assessment of the changes in the cellulosic surface of micro and nano banana fibres due to saponin treatment.
    Cordeiro N; Faria M; Abraham E; Pothan LA
    Carbohydr Polym; 2013 Oct; 98(1):1065-71. PubMed ID: 23987448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review.
    Pappu A; Patil V; Jain S; Mahindrakar A; Haque R; Thakur VK
    Int J Biol Macromol; 2015 Aug; 79():449-58. PubMed ID: 26001493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface characterization of poly(methyl methacrylate-co-n-butyl acrylate-co-cyclopentylstyryl-polyhedral oligomeric silsesquioxane) by inverse gas chromatography.
    Zou QC; Zhang SL; Tang QQ; Wang SM; Wu LM
    J Chromatogr A; 2006 Mar; 1110(1-2):140-5. PubMed ID: 16460744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization.
    Cherian BM; Pothan LA; Nguyen-Chung T; Mennig G; Kottaisamy M; Thomas S
    J Agric Food Chem; 2008 Jul; 56(14):5617-27. PubMed ID: 18570426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface rheology of saponin adsorption layers.
    Stanimirova R; Marinova K; Tcholakova S; Denkov ND; Stoyanov S; Pelan E
    Langmuir; 2011 Oct; 27(20):12486-98. PubMed ID: 21894983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XPS studies of chemically modified banana fibers.
    Pothan LA; Simon F; Spange S; Thomas S
    Biomacromolecules; 2006 Mar; 7(3):892-8. PubMed ID: 16529428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface characterization of industrial fibers with inverse gas chromatography.
    van Asten A; van Veenendaal N; Koster S
    J Chromatogr A; 2000 Aug; 888(1-2):175-96. PubMed ID: 10949485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography.
    Peng Y; Gardner DJ; Han Y; Cai Z; Tshabalala MA
    J Colloid Interface Sci; 2013 Sep; 405():85-95. PubMed ID: 23786833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xyloglucan coating for enhanced strength and toughness in wood fibre networks.
    Vilaseca F; Serra A; Kochumalayil JJ
    Carbohydr Polym; 2020 Feb; 229():115540. PubMed ID: 31826448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the interaction polybutadiene/fillers using inverse gas chromatography.
    Calvet R; Del Confetto S; Balard H; Brendlé E; Donnet JB
    J Chromatogr A; 2012 Aug; 1253():164-70. PubMed ID: 22819369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing highly fibrillated nanocellulose by modifying the gel point methodology.
    Sanchez-Salvador JL; Monte MC; Batchelor W; Garnier G; Negro C; Blanco A
    Carbohydr Polym; 2020 Jan; 227():115340. PubMed ID: 31590859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the effect of a non-ionic surfactant on the surface of sucrose crystals and on the crystal growth process by inverse gas chromatography.
    Kumar KV; Rocha F
    J Chromatogr A; 2009 Nov; 1216(48):8528-34. PubMed ID: 19853258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion.
    Deepa B; Abraham E; Cherian BM; Bismarck A; Blaker JJ; Pothan LA; Leao AL; de Souza SF; Kottaisamy M
    Bioresour Technol; 2011 Jan; 102(2):1988-97. PubMed ID: 20926289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse gas chromatography for natural fibre characterisation: Identification of the critical parameters to determine the Brunauer-Emmett-Teller specific surface area.
    Legras A; Kondor A; Heitzmann MT; Truss RW
    J Chromatogr A; 2015 Dec; 1425():273-9. PubMed ID: 26627590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvatochromic and electrokinetic studies of banana fibrils prepared from steam-exploded banana fiber.
    Paul SA; Piasta D; Spange S; Pothan LA; Thomas S; Bellmann C
    Biomacromolecules; 2008 Jul; 9(7):1802-10. PubMed ID: 18533702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of the effect of refining on physical and electrokinetic properties of various cellulosic fibres.
    Bhardwaj NK; Hoang V; Nguyen KL
    Bioresour Technol; 2007 May; 98(8):1647-54. PubMed ID: 16831545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial, function, and crystalline analysis on the cellulose fibre extracted from the banana tree trunks.
    Thandavamoorthy R; Devarajan Y; Kaliappan N
    Sci Rep; 2023 Sep; 13(1):15301. PubMed ID: 37714888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the temperature effect on the acid-base properties of cellulose acrylate by inverse gas chromatography at infinite dilution.
    Hamieh T
    J Chromatogr A; 2018 Sep; 1568():168-176. PubMed ID: 30033168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile.
    Pontes M; Pereira J; Câmara JS
    Food Chem; 2012 Oct; 134(4):2509-20. PubMed ID: 23442718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium.
    Molina-Ramírez C; Cañas-Gutiérrez A; Castro C; Zuluaga R; Gañán P
    Carbohydr Polym; 2020 Jul; 240():116341. PubMed ID: 32475595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.