These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 23987463)
21. Identification, characterization, and partial purification of glucoamylase from Aspergillus niger (syn A. ficuum) NRRL 3135. Vandersall AS; Cameron RG; Nairn CJ; Yelenosky G; Wodzinski RJ Prep Biochem; 1995; 25(1-2):29-55. PubMed ID: 7603971 [TBL] [Abstract][Full Text] [Related]
22. Comparison of starch hydrolysis activity and thermal stability of two Bacillus licheniformis alpha-amylases and insights into engineering alpha-amylase variants active under acidic conditions. Lee S; Oneda H; Minoda M; Tanaka A; Inouye K J Biochem; 2006 Jun; 139(6):997-1005. PubMed ID: 16788050 [TBL] [Abstract][Full Text] [Related]
23. Pullulan-complexed α-amylase and glucosidase in alginate beads: enhanced entrapment and stability. Jadhav SB; Singhal RS Carbohydr Polym; 2014 May; 105():49-56. PubMed ID: 24708951 [TBL] [Abstract][Full Text] [Related]
24. Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme. Dubey AK; Suresh C; Kavitha R; Karanth NG; Umesh-Kumar S FEBS Lett; 2000 Apr; 471(2-3):251-5. PubMed ID: 10767433 [TBL] [Abstract][Full Text] [Related]
25. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS. Shewale SD; Pandit AB Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436 [TBL] [Abstract][Full Text] [Related]
26. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. Yang K; Xu NS; Su WW J Biotechnol; 2010 Jul; 148(2-3):119-27. PubMed ID: 20580753 [TBL] [Abstract][Full Text] [Related]
27. Purification and characterization of heterogeneous glucoamylases from Monascus purpureus. Tachibana S; Yasuda M Biosci Biotechnol Biochem; 2007 Oct; 71(10):2573-6. PubMed ID: 17928688 [TBL] [Abstract][Full Text] [Related]
28. Synergistic action of recombinant alpha-amylase and glucoamylase on the hydrolysis of starch granules. Wong DW; Robertson GH; Lee CC; Wagschal K Protein J; 2007 Apr; 26(3):159-64. PubMed ID: 17203391 [TBL] [Abstract][Full Text] [Related]
29. Purification and properties of alpha-amylase from Aspergillus oryzae ATCC 76080. Chang CT; Tang MS; Lin CF Biochem Mol Biol Int; 1995 May; 36(1):185-93. PubMed ID: 7663414 [TBL] [Abstract][Full Text] [Related]
30. Isoglucose production from raw starchy materials based on a two-stage enzymatic system. Gromada A; Fiedurek J; Szczodrak J Pol J Microbiol; 2008; 57(2):141-8. PubMed ID: 18646402 [TBL] [Abstract][Full Text] [Related]
32. Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Talekar S; Pandharbale A; Ladole M; Nadar S; Mulla M; Japhalekar K; Pattankude K; Arage D Bioresour Technol; 2013 Nov; 147():269-275. PubMed ID: 23999260 [TBL] [Abstract][Full Text] [Related]
33. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii. Michelin M; Silva TM; Benassi VM; Peixoto-Nogueira SC; Moraes LA; Leão JM; Jorge JA; Terenzi HF; Polizeli Mde L Carbohydr Res; 2010 Nov; 345(16):2348-53. PubMed ID: 20850111 [TBL] [Abstract][Full Text] [Related]
34. Comparison of some properties of free and immobilized alpha-amylase by Aspergillus sclerotiorum in calcium alginate gel beads. Yagar H; Ertan F; Balkan B Prep Biochem Biotechnol; 2008; 38(1):13-23. PubMed ID: 18080907 [TBL] [Abstract][Full Text] [Related]
35. Effect of thermostable α-amylase injection on mechanical and physiochemical properties for saccharification of extruded corn starch. Myat L; Ryu GH J Sci Food Agric; 2014 Jan; 94(2):288-95. PubMed ID: 23744822 [TBL] [Abstract][Full Text] [Related]
36. A two-enzyme immobilization approach using carbon nanotubes/silica as support. Du K; Sun J; Zhou X; Feng W; Jiang X; Ji P Biotechnol Prog; 2015; 31(1):42-7. PubMed ID: 25378233 [TBL] [Abstract][Full Text] [Related]
37. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme. Li Z; Cai L; Gu Z; Shi YC J Agric Food Chem; 2014 Aug; 62(32):8114-9. PubMed ID: 25039418 [TBL] [Abstract][Full Text] [Related]
38. Enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis. Bravo Rodríguez V; Jurado Alameda E; Martínez Gallegos JF; Reyes Requena A; García López AI Biotechnol Prog; 2006; 22(3):718-22. PubMed ID: 16739954 [TBL] [Abstract][Full Text] [Related]
39. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation. Rajoka MI; Yasmin A; Latif F Lett Appl Microbiol; 2004; 39(1):13-8. PubMed ID: 15189282 [TBL] [Abstract][Full Text] [Related]
40. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading. Sumitani J; Tottori T; Kawaguchi T; Arai M Biochem J; 2000 Sep; 350 Pt 2(Pt 2):477-84. PubMed ID: 10947962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]