These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
587 related articles for article (PubMed ID: 23987584)
1. The pathogenesis of chronic lymphocytic leukemia. Zhang S; Kipps TJ Annu Rev Pathol; 2014; 9():103-18. PubMed ID: 23987584 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the mRNA expression profile of B-cell receptor components in normal CD5-high B-lymphocytes and chronic lymphocytic leukemia: a key role of ZAP70. Gladkikh AA; Potashnikova DM; Tatarskiy V; Yastrebova M; Khamidullina A; Barteneva N; Vorobjev I Cancer Med; 2017 Dec; 6(12):2984-2997. PubMed ID: 29125235 [TBL] [Abstract][Full Text] [Related]
3. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. Mongini PK; Gupta R; Boyle E; Nieto J; Lee H; Stein J; Bandovic J; Stankovic T; Barrientos J; Kolitz JE; Allen SL; Rai K; Chu CC; Chiorazzi N J Immunol; 2015 Aug; 195(3):901-23. PubMed ID: 26136429 [TBL] [Abstract][Full Text] [Related]
4. CXC chemokine ligand 13 and CC chemokine ligand 19 cooperatively render resistance to apoptosis in B cell lineage acute and chronic lymphocytic leukemia CD23+CD5+ B cells. Chunsong H; Yuling H; Li W; Jie X; Gang Z; Qiuping Z; Qingping G; Kejian Z; Li Q; Chang AE; Youxin J; Jinquan T J Immunol; 2006 Nov; 177(10):6713-22. PubMed ID: 17082584 [TBL] [Abstract][Full Text] [Related]
5. [Chronic lymphocytic leukemia: biology, disease progression, and current treatment strategies]. Yano T Rinsho Ketsueki; 2017; 58(10):1960-1972. PubMed ID: 28978838 [TBL] [Abstract][Full Text] [Related]
6. TLR2 Expression on Leukemic B Cells from Patients with Chronic Lymphocytic Leukemia. Szymańska A; Bojarska-Junak A; Drobiecki A; Tomczak W; Roliński J; Hus M; Hus I Arch Immunol Ther Exp (Warsz); 2019 Feb; 67(1):55-65. PubMed ID: 30196472 [TBL] [Abstract][Full Text] [Related]
7. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective. Darwiche W; Gubler B; Marolleau JP; Ghamlouch H Front Immunol; 2018; 9():683. PubMed ID: 29670635 [TBL] [Abstract][Full Text] [Related]
8. [Pathogenesis of chronic lymphocytic leukemia]. Fukuda T Rinsho Ketsueki; 2015 Mar; 56(3):261-8. PubMed ID: 25876778 [TBL] [Abstract][Full Text] [Related]
9. The chronic lymphocytic leukemia microenvironment: Beyond the B-cell receptor. Choi MY; Kashyap MK; Kumar D Best Pract Res Clin Haematol; 2016 Mar; 29(1):40-53. PubMed ID: 27742071 [TBL] [Abstract][Full Text] [Related]
10. Signal transduction pathways and mechanisms of apoptosis in CLL B-lymphocytes: their role in CLL pathogenesis. Kipps TJ Hematol Cell Ther; 1997 Nov; 39 Suppl 1():S17-27. PubMed ID: 9471058 [TBL] [Abstract][Full Text] [Related]
11. Autonomous B-cell receptor signaling and genetic aberrations in chronic lymphocytic leukemia-phenotype monoclonal B lymphocytosis in siblings of patients with chronic lymphocytic leukemia. Quinten E; Sepúlveda-Yáñez JH; Koning MT; Eken JA; Pfeifer D; Nteleah V; De Groen RAL; Saravia DA; Knijnenburg J; Stuivenberg-Bleijswijk HE; Pantic M; Agathangelidis A; Keppler-Hafkemeyer A; Van Bergen CAM; Uribe-Paredes R; Stamatopoulos K; Vermaat JSP; Zirlik K; Navarrete MA; Jumaa H; Veelken H Haematologica; 2024 Mar; 109(3):824-834. PubMed ID: 37439337 [TBL] [Abstract][Full Text] [Related]
12. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Herishanu Y; Pérez-Galán P; Liu D; Biancotto A; Pittaluga S; Vire B; Gibellini F; Njuguna N; Lee E; Stennett L; Raghavachari N; Liu P; McCoy JP; Raffeld M; Stetler-Stevenson M; Yuan C; Sherry R; Arthur DC; Maric I; White T; Marti GE; Munson P; Wilson WH; Wiestner A Blood; 2011 Jan; 117(2):563-74. PubMed ID: 20940416 [TBL] [Abstract][Full Text] [Related]
13. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. Kashyap MK; Amaya-Chanaga CI; Kumar D; Simmons B; Huser N; Gu Y; Hallin M; Lindquist K; Yafawi R; Choi MY; Amine AA; Rassenti LZ; Zhang C; Liu SH; Smeal T; Fantin VR; Kipps TJ; Pernasetti F; Castro JE J Hematol Oncol; 2017 May; 10(1):112. PubMed ID: 28526063 [TBL] [Abstract][Full Text] [Related]
15. Expression of functional sphingosine-1 phosphate receptor-1 is reduced by B cell receptor signaling and increased by inhibition of PI3 kinase δ but not SYK or BTK in chronic lymphocytic leukemia cells. Till KJ; Pettitt AR; Slupsky JR J Immunol; 2015 Mar; 194(5):2439-46. PubMed ID: 25632006 [TBL] [Abstract][Full Text] [Related]
16. Immunological aspects in chronic lymphocytic leukemia (CLL) development. García-Muñoz R; Roldan Galiacho V; Llorente L Ann Hematol; 2012 Jul; 91(7):981-96. PubMed ID: 22526361 [TBL] [Abstract][Full Text] [Related]
17. Relationship between the expression of CD25 and CD69 on the surface of lymphocytes T and B from peripheral blood and bone marrow of patients with chronic lymphocytic leukemia and established prognostic factors of this disease. Grywalska E; Bartkowiak-Emeryk M; Pasiarski M; Olszewska-Bożek K; Mielnik M; Podgajna M; Pieczykolan M; Hymos A; Fitas E; Surdacka A; Góźdź S; Roliński J Adv Clin Exp Med; 2018 Jul; 27(7):987-999. PubMed ID: 29893517 [TBL] [Abstract][Full Text] [Related]
18. The in vivo expression of type B CD23 mRNA in B-chronic lymphocytic leukemic cells is associated with an abnormally low CD23 upregulation by IL-4: comparison with their normal cellular counterparts. Fournier S; Tran ID; Suter U; Biron G; Delespesse G; Sarfati M Leuk Res; 1991; 15(7):609-18. PubMed ID: 1830631 [TBL] [Abstract][Full Text] [Related]
19. Correlation of the expression of CD32 and CD180 receptors on CLL cells and MEC1 cell line. Tsertsvadze T; Mitskevich N; Ghirdaladze D; Porakishvili N Georgian Med News; 2015 Mar; (240):56-9. PubMed ID: 25879560 [TBL] [Abstract][Full Text] [Related]