These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 23987994)

  • 1. Twinning superlattice formation in GaAs nanowires.
    Burgess T; Breuer S; Caroff P; Wong-Leung J; Gao Q; Hoe Tan H; Jagadish C
    ACS Nano; 2013 Sep; 7(9):8105-14. PubMed ID: 23987994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of surface and twinning energies on twining-superlattice formation in group III-V semiconductor nanowires: a first-principles study.
    Akiyama T; Nakamura K; Ito T
    Nanotechnology; 2019 Jun; 30(23):234002. PubMed ID: 30759424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation Mechanism of Twinning Superlattices in Doped GaAs Nanowires.
    Isik Goktas N; Sokolovskii A; Dubrovskii VG; LaPierre RR
    Nano Lett; 2020 May; 20(5):3344-3351. PubMed ID: 32239956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Behavior of InP Twinning Superlattice Nanowires.
    Liu Z; Papadimitriou I; Castillo-Rodríguez M; Wang C; Esteban-Manzanares G; Yuan X; Tan HH; Molina-Aldareguía JM; Llorca J
    Nano Lett; 2019 Jul; 19(7):4490-4497. PubMed ID: 31188620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable.
    Fortuna SA; Wen J; Chun IS; Li X
    Nano Lett; 2008 Dec; 8(12):4421-7. PubMed ID: 19367971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of nanowire superlattice structures for nanoscale photonics and electronics.
    Gudiksen MS; Lauhon LJ; Wang J; Smith DC; Lieber CM
    Nature; 2002 Feb; 415(6872):617-20. PubMed ID: 11832939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twinning superlattices in indium phosphide nanowires.
    Algra RE; Verheijen MA; Borgström MT; Feiner LF; Immink G; van Enckevort WJ; Vlieg E; Bakkers EP
    Nature; 2008 Nov; 456(7220):369-72. PubMed ID: 19020617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Diagram for Twinning Superlattice Te-Doped GaAs Nanowires.
    Ghukasyan A; Goktas NI; Dubrovskii VG; LaPierre RR
    Nano Lett; 2022 Feb; 22(3):1345-1349. PubMed ID: 35089042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twin-free GaAs nanosheets by selective area growth: implications for defect-free nanostructures.
    Chi CY; Chang CC; Hu S; Yeh TW; Cronin SB; Dapkus PD
    Nano Lett; 2013 Jun; 13(6):2506-15. PubMed ID: 23634790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-catalyzed VLS grown InAs nanowires with twinning superlattices.
    Grap T; Rieger T; Blömers Ch; Schäpers T; Grützmacher D; Lepsa MI
    Nanotechnology; 2013 Aug; 24(33):335601. PubMed ID: 23881182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GaAs/GaP superlattice nanowires: growth, vibrational and optical properties.
    Arif O; Zannier V; Rossi F; De Matteis D; Kress K; De Luca M; Zardo I; Sorba L
    Nanoscale; 2023 Jan; 15(3):1145-1153. PubMed ID: 35903972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring electronic transparency of twin-plane 1D superlattices.
    Tsuzuki H; Cesar DF; Dias MR; Castelano LK; Lopez-Richard V; Rino JP; Marques GE
    ACS Nano; 2011 Jul; 5(7):5519-25. PubMed ID: 21662973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon.
    Matteini F; Dubrovskii VG; Rüffer D; Tütüncüoğlu G; Fontana Y; Morral AF
    Nanotechnology; 2015 Mar; 26(10):105603. PubMed ID: 25687793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport in twinning superlattice and mixed-phase GaAs nanowires.
    Ghukasyan A; LaPierre R
    Nanoscale; 2022 May; 14(17):6480-6487. PubMed ID: 35416826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the morphology, composition and crystal structure in gold-seeded GaAs(1-x)Sb(x) nanowires.
    Yuan X; Caroff P; Wong-Leung J; Tan HH; Jagadish C
    Nanoscale; 2015 Mar; 7(11):4995-5003. PubMed ID: 25692266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Be dopant pairing in VLS grown GaAs nanowires with twinning superlattices.
    Mead C; Huang C; Isik Goktas N; Fiordaliso EM; LaPierre RR; Lauhon LJ
    Nanotechnology; 2023 Jul; 34(38):. PubMed ID: 37321202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and properties of coherent twinning superlattice nanowires.
    Wood EL; Sansoz F
    Nanoscale; 2012 Sep; 4(17):5268-76. PubMed ID: 22833267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of InAs/InP core-shell nanowires with various pure crystal structures.
    Gorji Ghalamestani S; Heurlin M; Wernersson LE; Lehmann S; Dick KA
    Nanotechnology; 2012 Jul; 23(28):285601. PubMed ID: 22717421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural properties of <111>B -oriented III-V nanowires.
    Johansson J; Karlsson LS; Svensson CP; Mårtensson T; Wacaser BA; Deppert K; Samuelson L; Seifert W
    Nat Mater; 2006 Jul; 5(7):574-80. PubMed ID: 16783358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.