These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23988006)

  • 1. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications.
    Feng J; Jian G; Liu Q; Zachariah MR
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):8875-80. PubMed ID: 23988006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria.
    Clark BR; Pantoya ML
    Phys Chem Chem Phys; 2010 Oct; 12(39):12653-7. PubMed ID: 20730185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver ferrite: a superior oxidizer for thermite-driven biocidal nanoenergetic materials.
    Wu T; Zachariah MR
    RSC Adv; 2019 Jan; 9(4):1831-1840. PubMed ID: 35516147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Promises from an Old Friend: Iodine-Rich Compounds as Prospective Energetic Biocidal Agents.
    Chang J; Zhao G; Zhao X; He C; Pang S; Shreeve JM
    Acc Chem Res; 2021 Jan; 54(2):332-343. PubMed ID: 33300791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of environment on iodine oxidation state and reactivity with aluminum.
    Smith DK; McCollum J; Pantoya ML
    Phys Chem Chem Phys; 2016 Apr; 18(16):11243-50. PubMed ID: 27052472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure.
    Prakash A; McCormick AV; Zachariah MR
    Nano Lett; 2005 Jul; 5(7):1357-60. PubMed ID: 16178238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of core-shell structure KClO
    Yang F; Kang X; Luo J; Yi Z; Tang Y
    Sci Rep; 2017 Jun; 7(1):3730. PubMed ID: 28623365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iodotrifluoromethylation of alkenes and alkynes with sodium trifluoromethanesulfinate and iodine pentoxide.
    Hang Z; Li Z; Liu ZQ
    Org Lett; 2014 Jul; 16(14):3648-51. PubMed ID: 24983328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dense iodine-rich compounds with low detonation pressures as biocidal agents.
    He C; Zhang J; Shreeve JM
    Chemistry; 2013 Jun; 19(23):7503-9. PubMed ID: 23576298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction Kinetics and Combustion Dynamics of I4O9 and Aluminum Mixtures.
    Smith DK; Pantoya ML; Parkey JS; Kesmez M
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27842354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell iron-iron oxide nanoparticles synthesized by laser-induced pyrolysis.
    Bomatí-Miguel O; Tartaj P; Morales MP; Bonville P; Golla-Schindler U; Zhao XQ; Veintemillas-Verdaguer S
    Small; 2006 Dec; 2(12):1476-83. PubMed ID: 17193009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A free-radical cascade trifluoromethylation/cyclization of N-arylmethacrylamides and enynes with sodium trifluoromethanesulfinate and iodine pentoxide.
    Zhang L; Li Z; Liu ZQ
    Org Lett; 2014 Jul; 16(14):3688-91. PubMed ID: 24983522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Molecule Catalysis Revealed: Elucidating the Mechanistic Framework for the Formation and Growth of Atmospheric Iodine Oxide Aerosols in Gas-Phase and Aqueous Surface Environments.
    Kumar M; Saiz-Lopez A; Francisco JS
    J Am Chem Soc; 2018 Nov; 140(44):14704-14716. PubMed ID: 30338993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of magnetic graphene oxide-ferrite nanocomposites for oxidative decomposition of Remazol Black B.
    Sheshmani S; Falahat B; Nikmaram FR
    Int J Biol Macromol; 2017 Apr; 97():671-678. PubMed ID: 28109816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide-iron oxide nanocomposite as an inhibitor of Aβ 42 amyloid peptide aggregation.
    Ahmad I; Mozhi A; Yang L; Han Q; Liang X; Li C; Yang R; Wang C
    Colloids Surf B Biointerfaces; 2017 Nov; 159():540-545. PubMed ID: 28846964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Important effects of relative humidity on the formation processes of iodine oxide particles from CH
    R'Mili B; Strekowski RS; Temime-Roussel B; Wortham H; Monod A
    J Hazard Mater; 2022 Jul; 433():128729. PubMed ID: 35405585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal.
    Nethaji S; Sivasamy A
    Ecotoxicol Environ Saf; 2017 Apr; 138():292-297. PubMed ID: 28086182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction.
    Pati RK; Lee IC; Hou S; Akhuemonkhan O; Gaskell KJ; Wang Q; Frenkel AI; Chu D; Salamanca-Riba LG; Ehrman SH
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2624-35. PubMed ID: 20356136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light.
    Gankanda A; Coddens EM; Zhang Y; Cwiertny DM; Grassian VH
    Environ Sci Process Impacts; 2016 Dec; 18(12):1484-1491. PubMed ID: 27796391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.
    Zhou X; Xu D; Zhang Q; Lu J; Zhang K
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7641-6. PubMed ID: 23869818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.