These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 23988016)
1. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661. Karasulu B; Patil M; Thiel W J Am Chem Soc; 2013 Sep; 135(36):13400-13. PubMed ID: 23988016 [TBL] [Abstract][Full Text] [Related]
2. Catalytic mechanism investigation of lysine-specific demethylase 1 (LSD1): a computational study. Kong X; Ouyang S; Liang Z; Lu J; Chen L; Shen B; Li D; Zheng M; Li KK; Luo C; Jiang H PLoS One; 2011; 6(9):e25444. PubMed ID: 21984927 [TBL] [Abstract][Full Text] [Related]
3. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism. Cao Y; Han S; Yu L; Qian H; Chen JZ J Phys Chem B; 2014 May; 118(20):5406-17. PubMed ID: 24801764 [TBL] [Abstract][Full Text] [Related]
4. Concerted hydrogen atom and electron transfer mechanism for catalysis by lysine-specific demethylase. Yu T; Higashi M; Cembran A; Gao J; Truhlar DG J Phys Chem B; 2013 Jul; 117(28):8422-9. PubMed ID: 23725223 [TBL] [Abstract][Full Text] [Related]
5. MD and QM/MM study on catalytic mechanism of a FAD-dependent enzyme ORF36: for nitro sugar biosynthesis. Li Y; Ding L; Zhang Q; Wang W J Mol Graph Model; 2013 Jul; 44():9-16. PubMed ID: 23735899 [TBL] [Abstract][Full Text] [Related]
6. A molecular dynamics and quantum mechanics/molecular mechanics study of the catalytic reductase mechanism of methionine sulfoxide reductase A: formation and reduction of a sulfenic acid. Dokainish HM; Gauld JW Biochemistry; 2013 Mar; 52(10):1814-27. PubMed ID: 23418817 [TBL] [Abstract][Full Text] [Related]
7. Product specificity and mechanism of protein lysine methyltransferases: insights from the histone lysine methyltransferase SET8. Zhang X; Bruice TC Biochemistry; 2008 Jun; 47(25):6671-7. PubMed ID: 18512960 [TBL] [Abstract][Full Text] [Related]
8. A comparative computational investigation on the proton and hydride transfer mechanisms of monoamine oxidase using model molecules. Atalay VE; Erdem SS Comput Biol Chem; 2013 Dec; 47():181-91. PubMed ID: 24121676 [TBL] [Abstract][Full Text] [Related]
9. Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment. Cortopassi WA; Simion R; Honsby CE; França TC; Paton RS Chemistry; 2015 Dec; 21(52):18983-92. PubMed ID: 26577067 [TBL] [Abstract][Full Text] [Related]
10. Lys300 plays a major role in the catalytic mechanism of maize polyamine oxidase. Polticelli F; Basran J; Faso C; Cona A; Minervini G; Angelini R; Federico R; Scrutton NS; Tavladoraki P Biochemistry; 2005 Dec; 44(49):16108-20. PubMed ID: 16331971 [TBL] [Abstract][Full Text] [Related]
11. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations. Lonsdale R; Reetz MT J Am Chem Soc; 2015 Nov; 137(46):14733-42. PubMed ID: 26521678 [TBL] [Abstract][Full Text] [Related]
12. The role of the active site lysine residue on FAD reduction by NADPH in glutathione reductase. Bonanata J Comput Biol Chem; 2024 Jun; 110():108075. PubMed ID: 38678729 [TBL] [Abstract][Full Text] [Related]
13. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Su Q; Klinman JP Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824 [TBL] [