BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 23988016)

  • 1. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661.
    Karasulu B; Patil M; Thiel W
    J Am Chem Soc; 2013 Sep; 135(36):13400-13. PubMed ID: 23988016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic mechanism investigation of lysine-specific demethylase 1 (LSD1): a computational study.
    Kong X; Ouyang S; Liang Z; Lu J; Chen L; Shen B; Li D; Zheng M; Li KK; Luo C; Jiang H
    PLoS One; 2011; 6(9):e25444. PubMed ID: 21984927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism.
    Cao Y; Han S; Yu L; Qian H; Chen JZ
    J Phys Chem B; 2014 May; 118(20):5406-17. PubMed ID: 24801764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concerted hydrogen atom and electron transfer mechanism for catalysis by lysine-specific demethylase.
    Yu T; Higashi M; Cembran A; Gao J; Truhlar DG
    J Phys Chem B; 2013 Jul; 117(28):8422-9. PubMed ID: 23725223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MD and QM/MM study on catalytic mechanism of a FAD-dependent enzyme ORF36: for nitro sugar biosynthesis.
    Li Y; Ding L; Zhang Q; Wang W
    J Mol Graph Model; 2013 Jul; 44():9-16. PubMed ID: 23735899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics and quantum mechanics/molecular mechanics study of the catalytic reductase mechanism of methionine sulfoxide reductase A: formation and reduction of a sulfenic acid.
    Dokainish HM; Gauld JW
    Biochemistry; 2013 Mar; 52(10):1814-27. PubMed ID: 23418817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Product specificity and mechanism of protein lysine methyltransferases: insights from the histone lysine methyltransferase SET8.
    Zhang X; Bruice TC
    Biochemistry; 2008 Jun; 47(25):6671-7. PubMed ID: 18512960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative computational investigation on the proton and hydride transfer mechanisms of monoamine oxidase using model molecules.
    Atalay VE; Erdem SS
    Comput Biol Chem; 2013 Dec; 47():181-91. PubMed ID: 24121676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment.
    Cortopassi WA; Simion R; Honsby CE; França TC; Paton RS
    Chemistry; 2015 Dec; 21(52):18983-92. PubMed ID: 26577067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lys300 plays a major role in the catalytic mechanism of maize polyamine oxidase.
    Polticelli F; Basran J; Faso C; Cona A; Minervini G; Angelini R; Federico R; Scrutton NS; Tavladoraki P
    Biochemistry; 2005 Dec; 44(49):16108-20. PubMed ID: 16331971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.
    Lonsdale R; Reetz MT
    J Am Chem Soc; 2015 Nov; 137(46):14733-42. PubMed ID: 26521678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the active site lysine residue on FAD reduction by NADPH in glutathione reductase.
    Bonanata J
    Comput Biol Chem; 2024 Jun; 110():108075. PubMed ID: 38678729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ONIOM calculations on serotonin degradation by monoamine oxidase B: insight into the oxidation mechanism and covalent reversible inhibition.
    Cakir K; Erdem SS; Atalay VE
    Org Biomol Chem; 2016 Oct; 14(39):9239-9252. PubMed ID: 27605388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the mechanism of oxidation of dihydroorotate to orotate catalysed by human class 2 dihydroorotate dehydrogenase: a QM/MM free energy study.
    Alves CN; Silva JR; Roitberg AE
    Phys Chem Chem Phys; 2015 Jul; 17(27):17790-6. PubMed ID: 26087682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate.
    Luka Z; Pakhomova S; Loukachevitch LV; Calcutt MW; Newcomer ME; Wagner C
    Protein Sci; 2014 Jul; 23(7):993-8. PubMed ID: 24715612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular oxygen activation and proton transfer mechanisms in lanosterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Phys Chem B; 2009 Jun; 113(23):8170-82. PubMed ID: 19438188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism.
    Metz S; Thiel W
    J Am Chem Soc; 2009 Oct; 131(41):14885-902. PubMed ID: 19788181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxo-iron mediated deformylation in sterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Am Chem Soc; 2010 Aug; 132(30):10293-305. PubMed ID: 20662512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process.
    Forneris F; Binda C; Vanoni MA; Mattevi A; Battaglioli E
    FEBS Lett; 2005 Apr; 579(10):2203-7. PubMed ID: 15811342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.