These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23988133)

  • 41. Effects of ethanol storage and lipid and urea extraction on δ
    Burgess KB; Bennett MB
    J Fish Biol; 2017 Jan; 90(1):417-423. PubMed ID: 27730640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Somatotopy within the medullary electrosensory nucleus of the little skate, Raja erinacea.
    Bodznick D; Schmidt AW
    J Comp Neurol; 1984 Jun; 225(4):581-90. PubMed ID: 6736290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relative eye size in elasmobranchs.
    Lisney TJ; Collin SP
    Brain Behav Evol; 2007; 69(4):266-79. PubMed ID: 17314474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An elasmobranch maternity ward: female round stingrays Urobatis halleri use warm, restored estuarine habitat during gestation.
    Jirik KE; Lowe CG
    J Fish Biol; 2012 Apr; 80(5):1227-45. PubMed ID: 22497381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual fields of four batoid fishes: a comparative study.
    McComb DM; Kajiura SM
    J Exp Biol; 2008 Feb; 211(Pt 4):482-90. PubMed ID: 18245624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary bottlenecks in brackish water habitats drive the colonization of fresh water by stingrays.
    Kirchhoff KN; Hauffe T; Stelbrink B; Albrecht C; Wilke T
    J Evol Biol; 2017 Aug; 30(8):1576-1591. PubMed ID: 28590074
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.
    Treberg JR; Speers-Roesch B; Piermarini PM; Ip YK; Ballantyne JS; Driedzic WR
    J Exp Biol; 2006 Mar; 209(Pt 5):860-70. PubMed ID: 16481575
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensory systems in sawfishes. 2. The lateral line.
    Wueringer BE; Peverell SC; Seymour J; Squire L; Collin SP
    Brain Behav Evol; 2011; 78(2):150-61. PubMed ID: 21829005
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diversity, extinction risk and conservation of Malaysian fishes.
    Chong VC; Lee PK; Lau CM
    J Fish Biol; 2010 Jun; 76(9):2009-66. PubMed ID: 20557654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphologic features of the cerebellum of the Atlantic stingray, and their possible evolutionary significance.
    Puzdrowski RL; Gruber S
    Integr Zool; 2009 Mar; 4(1):110-122. PubMed ID: 21392281
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: addition of receptor organs with age.
    Zakon HH
    J Comp Neurol; 1984 Oct; 228(4):557-70. PubMed ID: 6490969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Test of the mechanotactile hypothesis: neuromast morphology and response dynamics of mechanosensory lateral line primary afferents in the stingray.
    Maruska KP; Tricas TC
    J Exp Biol; 2004 Sep; 207(Pt 20):3463-76. PubMed ID: 15339942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validated annual band-pair periodicity and growth parameters of blue-spotted maskray Neotrygon kuhlii from south-east Queensland, Australia.
    Pierce SJ; Bennett MB
    J Fish Biol; 2009 Dec; 75(10):2490-508. PubMed ID: 20738504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Origins, diversification, and historical structure of the helminth fauna inhabiting neotropical freshwater stingrays (Potamotrygonidae).
    Brooks DR
    J Parasitol; 1992 Aug; 78(4):588-95. PubMed ID: 1635017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Trophic ecology of three stingrays (Myliobatoidei: Dasyatidae) off the Brazilian north-eastern coast: Habitat use and resource partitioning.
    Queiroz APN; Araújo MLG; Hussey NE; Lessa RPT
    J Fish Biol; 2023 Jan; 102(1):27-43. PubMed ID: 36153814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systematic implications of brain morphology in potamotrygonidae (Chondrichthyes: Myliobatiformes).
    Fontenelle JP; de Carvalho MR
    J Morphol; 2016 Feb; 277(2):252-63. PubMed ID: 26592726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: Terapontidae).
    Davis AM; Unmack PJ; Pusey BJ; Johnson JB; Pearson RG
    J Evol Biol; 2012 Jun; 25(6):1163-79. PubMed ID: 22519660
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrosensitive spatial vectors in elasmobranch fishes: implications for source localization.
    Rivera-Vicente AC; Sewell J; Tricas TC
    PLoS One; 2011 Jan; 6(1):e16008. PubMed ID: 21249147
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freshwater elasmobranchs: a review of their physiology and biochemistry.
    Ballantyne JS; Robinson JW
    J Comp Physiol B; 2010 Apr; 180(4):475-93. PubMed ID: 20143234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish.
    Montgomery JC; Bodznick D
    Neurosci Lett; 1994 Jun; 174(2):145-8. PubMed ID: 7970170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.