These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 23988351)
1. Synthesis and antiproliferative activity of new cytotoxic tri- and tetraazabenzo[3,2-a]fluorene-5,6-dione derivatives. Leepasert T; Shahabi M; Shanab K; Schirmer E; Holzer W; Spreitzer H; Aicher B; Müller G; Günther E Bioorg Med Chem Lett; 2013 Oct; 23(19):5264-6. PubMed ID: 23988351 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, cytotoxicity, and QSAR study of new aza-cyclopenta[b]fluorene-1,9-dione derivatives. Miri R; Firuzi O; Peymani P; Zamani M; Mehdipour AR; Heydari Z; Farahani MM; Shafiee A Chem Biol Drug Des; 2012 Jan; 79(1):68-75. PubMed ID: 21838761 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and cytotoxicity evaluation of substituted pyridazino[4,5-b]phenazine-5,12-diones and tri/tetra-azabenzofluorene-5,6-diones. Lee HJ; Kim JS; Suh ME; Park HJ; Lee SK; Rhee HK; Kim HJ; Seo EK; Kim C; Lee CO; Park Choo HY Eur J Med Chem; 2007 Feb; 42(2):168-74. PubMed ID: 17070967 [TBL] [Abstract][Full Text] [Related]
4. Regioselective synthesis and in vitro anticancer activity of 4-aza-podophyllotoxin derivatives catalyzed by L-proline. Shi C; Wang J; Chen H; Shi D J Comb Chem; 2010 Jul; 12(4):430-4. PubMed ID: 20503973 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of new 4-aza-podophyllotoxin analogs via microwave-assisted multi-component reactions and evaluation of their cytotoxic activity. Shi F; Zeng XN; Zhang G; Ma N; Jiang B; Tu S Bioorg Med Chem Lett; 2011 Dec; 21(23):7119-23. PubMed ID: 22004717 [TBL] [Abstract][Full Text] [Related]
6. Design and synthesis of stable, water soluble radicals as potential anti-cancer agents. Lattmann E; Begum A; Plater MJ Drug Des Discov; 1999 Nov; 16(3):195-201. PubMed ID: 10624565 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and antiproliferative activity of new cytotoxic azanaphthoquinone pyrrolo-annelated derivatives: Part II. Shanab K; Schirmer E; Wulz E; Weissenbacher B; Lassnig S; Slanz R; Fösleitner G; Holzer W; Spreitzer H; Schmidt P; Aicher B; Müller G; Günther E Bioorg Med Chem Lett; 2011 May; 21(10):3117-21. PubMed ID: 21458262 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and evaluation of the antiproliferative activity of novel isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives. Desplat V; Moreau S; Belisle-Fabre S; Thiolat D; Uranga J; Lucas R; de Moor L; Massip S; Jarry C; Mossalayi DM; Sonnet P; Déléris G; Guillon J J Enzyme Inhib Med Chem; 2011 Oct; 26(5):657-67. PubMed ID: 21250818 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and antiproliferative activity evaluation of imidazole-based indeno[1,2-b]quinoline-9,11-dione derivatives. Sarkarzadeh H; Miri R; Firuzi O; Amini M; Razzaghi-Asl N; Edraki N; Shafiee A Arch Pharm Res; 2013 Apr; 36(4):436-47. PubMed ID: 23440577 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and in vitro anticancer activity of 6,7-methylenedioxy (or 5-hydroxy-6-methoxy)-2-(substituted selenophenyl)quinolin-4-one analogs. Chen CT; Hsu MH; Cheng YY; Liu CY; Chou LC; Huang LJ; Wu TS; Yang X; Lee KH; Kuo SC Eur J Med Chem; 2011 Dec; 46(12):6046-56. PubMed ID: 22030314 [TBL] [Abstract][Full Text] [Related]
11. Antifolate and antiproliferative activity of 6,8,10-triazaspiro[4.5]deca-6,8-dienes and 1,3,5-triazaspiro[5.5]undeca-1,3-dienes. Ma X; Chui WK Bioorg Med Chem; 2010 Jan; 18(2):737-43. PubMed ID: 20036565 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis and biological activities of sorafenib derivatives as antitumor agents. Yao J; He Z; Chen J; Sun W; Fang H; Xu W Bioorg Med Chem Lett; 2012 Nov; 22(21):6549-53. PubMed ID: 23021967 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of N-substituted derivatives of 8,11-dimethyl-3,5-dioxo-4-azatricyclo[5.2.2.0(2,6)]undec-8-en-1-yl acetate and screening of cytotoxic activity of selected azatricycloundecane compounds. Kossakowski J; Kuran B Acta Pol Pharm; 2008; 65(3):371-5. PubMed ID: 18646557 [TBL] [Abstract][Full Text] [Related]
14. Oxiranylmethyloxy or thiiranylmethyloxy-azaxanthones and -acridone analogues as potential topoisomerase I inhibitors. Cho HJ; Jung MJ; Kwon Y; Na Y Bioorg Med Chem Lett; 2009 Dec; 19(23):6766-9. PubMed ID: 19836231 [TBL] [Abstract][Full Text] [Related]
15. Aza-isoindolo and isoindolo-azaquinoxaline derivatives with antiproliferative activity. Parrino B; Carbone A; Spanò V; Montalbano A; Giallombardo D; Barraja P; Attanzio A; Tesoriere L; Sissi C; Palumbo M; Cirrincione G; Diana P Eur J Med Chem; 2015 Apr; 94():367-77. PubMed ID: 25778992 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, biological activity, and quantitative structure-activity relationship study of azanaphthalimide and arylnaphthalimide derivatives. Braña MF; Gradillas A; Gómez A; Acero N; Llinares F; Muñoz-Mingarro D; Abradelo C; Rey-Stolle F; Yuste M; Campos J; Gallo MA; Espinosa A J Med Chem; 2004 Apr; 47(9):2236-42. PubMed ID: 15084122 [TBL] [Abstract][Full Text] [Related]
17. Design and synthesis of naphthoquinone derivatives as antiproliferative agents and 20S proteasome inhibitors. Xu K; Xiao Z; Tang YB; Huang L; Chen CH; Ohkoshi E; Lee KH Bioorg Med Chem Lett; 2012 Apr; 22(8):2772-4. PubMed ID: 22437113 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the first cytostatically active 1-aza-9-oxafluorenes as novel selective CDK1 inhibitors with P-glycoprotein modulating properties. Brachwitz K; Voigt B; Meijer L; Lozach O; Schächtele C; Molnár J; Hilgeroth A J Med Chem; 2003 Feb; 46(5):876-9. PubMed ID: 12593668 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and biological evaluation of new cytotoxic azanaphthoquinone pyrrolo-annelated derivatives. Shanab K; Schirmer E; Knafl H; Wulz E; Holzer W; Spreitzer H; Schmidt P; Aicher B; Müller G; Günther E Bioorg Med Chem Lett; 2010 Jul; 20(13):3950-2. PubMed ID: 20537894 [TBL] [Abstract][Full Text] [Related]