These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 23988438)
1. Detection of the dynamic magnetic behavior of the antiferromagnet in exchange-coupled NiFe/IrMn bilayers. Spizzo F; Tamisari M; Bonfiglioli E; Del Bianco L J Phys Condens Matter; 2013 Sep; 25(38):386001. PubMed ID: 23988438 [TBL] [Abstract][Full Text] [Related]
2. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix. Kuerbanjiang B; Wiedwald U; Haering F; Biskupek J; Kaiser U; Ziemann P; Herr U Nanotechnology; 2013 Nov; 24(45):455702. PubMed ID: 24141385 [TBL] [Abstract][Full Text] [Related]
3. The Effect of Interface Texture on Exchange Biasing in Ni(80)Fe(20)/Ir(20)Mn(80) System. Chen YT Nanoscale Res Lett; 2009 Jan; 4(1):90-93. PubMed ID: 20596365 [TBL] [Abstract][Full Text] [Related]
4. Influence of the thickness of an antiferromagnetic IrMn layer on the static and dynamic magnetization of weakly coupled CoFeB/IrMn/CoFeB trilayers. Jhajhria D; Pandya DK; Chaudhary S Beilstein J Nanotechnol; 2018; 9():2198-2208. PubMed ID: 30202690 [TBL] [Abstract][Full Text] [Related]
5. Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. Martí X; Park BG; Wunderlich J; Reichlová H; Kurosaki Y; Yamada M; Yamamoto H; Nishide A; Hayakawa J; Takahashi H; Jungwirth T Phys Rev Lett; 2012 Jan; 108(1):017201. PubMed ID: 22304281 [TBL] [Abstract][Full Text] [Related]
6. Study of the magnetic interface and its effect in Fe/NiFe bilayers of alternating order. Nayak S; Das SS; Singh BB; Charlton TR; Kinane CJ; Bedanta S RSC Adv; 2020 Sep; 10(56):34266-34275. PubMed ID: 35519045 [TBL] [Abstract][Full Text] [Related]
7. Tuning the exchange bias in NiFe/Fe-oxide bilayers by way of different Fe-oxide based mixtures made with an ion-beam deposition technique. Lin KW; Kol PH; Guo ZY; Ouyang H; van Lierop J J Nanosci Nanotechnol; 2007 Jan; 7(1):265-71. PubMed ID: 17455491 [TBL] [Abstract][Full Text] [Related]
8. Creation of Room-Temperature Sub-100 nm Antiferromagnetic Skyrmions in an Antiferromagnet IrMn through Interfacial Exchange Coupling. He B; Jin H; Zheng D; Liu Y; Li J; Hu Y; Wang Y; Zhang J; Peng Y; Wan C; Zhu T; Han X; Zhang S; Yu G Nano Lett; 2024 Feb; 24(7):2196-2202. PubMed ID: 38329428 [TBL] [Abstract][Full Text] [Related]
9. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Park BG; Wunderlich J; Martí X; Holý V; Kurosaki Y; Yamada M; Yamamoto H; Nishide A; Hayakawa J; Takahashi H; Shick AB; Jungwirth T Nat Mater; 2011 May; 10(5):347-51. PubMed ID: 21399629 [TBL] [Abstract][Full Text] [Related]
10. Study of magnetization reversal by minor loops in IrMn/CoFe exchange-biased bilayers. Wang L; Wang SG; Qin QH; Han XF J Nanosci Nanotechnol; 2012 Feb; 12(2):1044-8. PubMed ID: 22629892 [TBL] [Abstract][Full Text] [Related]
11. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Wang YY; Song C; Cui B; Wang GY; Zeng F; Pan F Phys Rev Lett; 2012 Sep; 109(13):137201. PubMed ID: 23030116 [TBL] [Abstract][Full Text] [Related]
12. Interfacial magnetism and exchange coupling in BiFeO3-CuO nanocomposite. Chakrabarti K; Sarkar B; Ashok VD; Das K; Chaudhuri SS; De SK Nanotechnology; 2013 Dec; 24(50):505711. PubMed ID: 24284870 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Spin Pumping Efficiency in Antiferromagnetic IrMn Thin Films around the Magnetic Phase Transition. Frangou L; Oyarzún S; Auffret S; Vila L; Gambarelli S; Baltz V Phys Rev Lett; 2016 Feb; 116(7):077203. PubMed ID: 26943556 [TBL] [Abstract][Full Text] [Related]
14. A polycrystalline model for magnetic exchange bias. Harres A; Geshev J J Phys Condens Matter; 2012 Aug; 24(32):326004, 1-7. PubMed ID: 22790222 [TBL] [Abstract][Full Text] [Related]
15. Training-induced positive exchange bias in NiFe/IrMn bilayers. Mishra SK; Radu F; Dürr HA; Eberhardt W Phys Rev Lett; 2009 May; 102(17):177208. PubMed ID: 19518827 [TBL] [Abstract][Full Text] [Related]
16. Spontaneous exchange bias formation driven by a structural phase transition in the antiferromagnetic material. Migliorini A; Kuerbanjiang B; Huminiuc T; Kepaptsoglou D; Muñoz M; Cuñado JLF; Camarero J; Aroca C; Vallejo-Fernández G; Lazarov VK; Prieto JL Nat Mater; 2018 Jan; 17(1):28-35. PubMed ID: 29180774 [TBL] [Abstract][Full Text] [Related]
18. Current-induced manipulation of exchange bias in IrMn/NiFe bilayer structures. Kang J; Ryu J; Choi JG; Lee T; Park J; Lee S; Jang H; Jung YS; Kim KJ; Park BG Nat Commun; 2021 Nov; 12(1):6420. PubMed ID: 34741042 [TBL] [Abstract][Full Text] [Related]
19. Effects of Cu dilution in IrMn on the exchange bias of CoFe/IrMn bilayers. Fecioru-Morariu M; Ali SR; Papusoi C; Sperlich M; Güntherodt G Phys Rev Lett; 2007 Aug; 99(9):097206. PubMed ID: 17931034 [TBL] [Abstract][Full Text] [Related]
20. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates. Xue X; Zhou Z; Peng B; Zhu M; Zhang Y; Ren W; Ren T; Yang X; Nan T; Sun NX; Liu M Sci Rep; 2015 Nov; 5():16480. PubMed ID: 26576658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]