These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23988573)

  • 21. The distinct function of Tep2 and Tep6 in the immune defense of Drosophila melanogaster against the pathogen Photorhabdus.
    Shokal U; Kopydlowski H; Eleftherianos I
    Virulence; 2017 Nov; 8(8):1668-1682. PubMed ID: 28498729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thioester-Containing Protein-4 Regulates the Drosophila Immune Signaling and Function against the Pathogen Photorhabdus.
    Shokal U; Eleftherianos I
    J Innate Immun; 2017; 9(1):83-93. PubMed ID: 27771727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel method for infecting Drosophila adult flies with insect pathogenic nematodes.
    Castillo JC; Shokal U; Eleftherianos I
    Virulence; 2012 May; 3(3):339-47. PubMed ID: 22546901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The prophenoloxidase system in Drosophila participates in the anti-nematode immune response.
    Cooper D; Wuebbolt C; Heryanto C; Eleftherianos I
    Mol Immunol; 2019 May; 109():88-98. PubMed ID: 30909122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. First Report of the Isolation of the Symbiotic Bacterium Photorhabdus luminescens subsp. laumondii Associated with Heterorhabditis safricana from South Africa.
    Geldenhuys J; Malan AP; Dicks LM
    Curr Microbiol; 2016 Dec; 73(6):790-795. PubMed ID: 27567899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TGF-β signaling regulates resistance to parasitic nematode infection in Drosophila melanogaster.
    Eleftherianos I; Castillo JC; Patrnogic J
    Immunobiology; 2016 Dec; 221(12):1362-1368. PubMed ID: 27473342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti.
    Fukruksa C; Yimthin T; Suwannaroj M; Muangpat P; Tandhavanant S; Thanwisai A; Vitta A
    Parasit Vectors; 2017 Sep; 10(1):440. PubMed ID: 28934970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A single-cell survey of
    Tattikota SG; Cho B; Liu Y; Hu Y; Barrera V; Steinbaugh MJ; Yoon SH; Comjean A; Li F; Dervis F; Hung RJ; Nam JW; Ho Sui S; Shim J; Perrimon N
    Elife; 2020 May; 9():. PubMed ID: 32396065
    [No Abstract]   [Full Text] [Related]  

  • 29. Proteomics of purified lamellocytes from Drosophila melanogaster HopT
    Wan B; Belghazi M; Lemauf S; Poirié M; Gatti JL
    Insect Biochem Mol Biol; 2021 Jul; 134():103584. PubMed ID: 34033897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNAseq Analysis of the
    Yadav S; Daugherty S; Shetty AC; Eleftherianos I
    G3 (Bethesda); 2017 Jun; 7(6):1955-1967. PubMed ID: 28450373
    [No Abstract]   [Full Text] [Related]  

  • 31. Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes.
    Kuwata R; Yoshiga T; Yoshida M; Kondo E
    Microbes Infect; 2008 Jun; 10(7):734-41. PubMed ID: 18538616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insect cellular and chemical limitations to pathogen development: the Colorado potato beetle, the nematode Heterorhabditis marelatus, and its symbiotic bacteria.
    Armer CA; Rao S; Berry RE
    J Invertebr Pathol; 2004; 87(2-3):114-22. PubMed ID: 15579320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developmental modulation of immunity: changes within the feeding period of the fifth larval stage in the defence reactions of Manduca sexta to infection by Photorhabdus.
    Eleftherianos I; Baldwin H; ffrench-Constant RH; Reynolds SE
    J Insect Physiol; 2008 Jan; 54(1):309-18. PubMed ID: 18001766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue communication in a systemic immune response of Drosophila.
    Yang H; Hultmark D
    Fly (Austin); 2016 Jul; 10(3):115-22. PubMed ID: 27116253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1.
    Bai X; Adams BJ; Ciche TA; Clifton S; Gaugler R; Hogenhout SA; Spieth J; Sternberg PW; Wilson RK; Grewal PS
    BMC Genomics; 2009 Apr; 10():205. PubMed ID: 19405965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thioester-Containing Proteins 2 and 4 Affect the Metabolic Activity and Inflammation Response in Drosophila.
    Shokal U; Kopydlowski H; Harsh S; Eleftherianos I
    Infect Immun; 2018 May; 86(5):. PubMed ID: 29463615
    [No Abstract]   [Full Text] [Related]  

  • 37. Specificity of association between Paenibacillus spp. and the entomopathogenic nematodes, Heterorhabditis spp.
    Enright MR; Griffin CT
    Microb Ecol; 2004 Oct; 48(3):414-23. PubMed ID: 15692861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling.
    Kenney E; Yaparla A; Hawdon JM; O'Halloran DM; Grayfer L; Eleftherianos I
    Sci Rep; 2020 Jul; 10(1):12312. PubMed ID: 32704134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole-genome expression profile analysis of Drosophila melanogaster immune responses.
    Teixeira L
    Brief Funct Genomics; 2012 Sep; 11(5):375-86. PubMed ID: 23023664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression.
    Kim Y; Ji D; Cho S; Park Y
    J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.