These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23988706)

  • 1. Apatite mineralization behavior on polyglutamic acid hydrogels in aqueous condition: effects of molecular weight.
    Miyazaki T; Mukai J; Ishida E; Ohtsuki C
    Biomed Mater Eng; 2013; 23(5):339-47. PubMed ID: 23988706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment.
    Sugino A; Miyazaki T; Ohtsuki C
    J Mater Sci Mater Med; 2008 Jun; 19(6):2269-74. PubMed ID: 18058198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apatite formation on a hydrogel containing sulfinic acid group under physiological conditions.
    Hamai R; Shirosaki Y; Miyazaki T
    J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):1924-1929. PubMed ID: 27283204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of polyglutamic acid with silanol groups and calcium salts to induce calcification in a simulated body fluid.
    Koh MY; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2011 Feb; 25(6):581-94. PubMed ID: 20207777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of osteoconductive organic inorganic nanohybrids through modification of chitin with alkoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Ashizuka M
    J Biomater Appl; 2007 Jul; 22(1):71-81. PubMed ID: 17065165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid.
    Kawashita M; Nakao M; Minoda M; Kim HM; Beppu T; Miyamoto T; Kokubo T; Nakamura T
    Biomaterials; 2003 Jun; 24(14):2477-84. PubMed ID: 12695074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apatite-forming ability of vinylphosphonic acid-based copolymer in simulated body fluid: effects of phosphate group content.
    Hamai R; Shirosaki Y; Miyazaki T
    J Mater Sci Mater Med; 2016 Oct; 27(10):152. PubMed ID: 27585911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A study of bone-like apatite formation on porous calcium phosphate ceramics in dynamic SBF].
    Duan Y; Yao Z; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):365-9. PubMed ID: 12557498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apatite formation abilities and mechanical properties of hydroxyethylmethacrylate-based organic-inorganic hybrids incorporated with sulfonic groups and calcium ions.
    Miyazaki T; Imamura M; Ishida E; Ashizuka M; Ohtsuki C
    J Mater Sci Mater Med; 2009 Jan; 20(1):157-61. PubMed ID: 18704648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid.
    Miyazaki T; Kuramoto A; Hirakawa A; Shirosaki Y; Ohtsuki C
    Dent Mater J; 2013; 32(4):544-9. PubMed ID: 23903634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid.
    Takeuchi A; Ohtsuki C; Miyazaki T; Tanaka H; Yamazaki M; Tanihara M
    J Biomed Mater Res A; 2003 May; 65(2):283-9. PubMed ID: 12734823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials.
    Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():134-43. PubMed ID: 24411361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process.
    Kawai T; Ohtsuki C; Kamitakahara M; Miyazaki T; Tanihara M; Sakaguchi Y; Konagaya S
    Biomaterials; 2004 Aug; 25(19):4529-34. PubMed ID: 15120497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coating of bone-like apatite for development of bioactive materials for bone reconstruction.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    Biomed Mater; 2007 Dec; 2(4):R17-23. PubMed ID: 18458474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen.
    Li X; Chang J
    J Biomed Mater Res A; 2008 May; 85(2):293-300. PubMed ID: 17688292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impartation of apatite-forming ability to chitosan nanofibres by using apatite nuclei.
    Adachi Y; Yabutsuka T; Takai S
    IET Nanobiotechnol; 2020 Oct; 14(8):668-672. PubMed ID: 33108322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment.
    Leonor IB; Baran ET; Kawashita M; Reis RL; Kokubo T; Nakamura T
    Acta Biomater; 2008 Sep; 4(5):1349-59. PubMed ID: 18400572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone.
    Song J; Malathong V; Bertozzi CR
    J Am Chem Soc; 2005 Mar; 127(10):3366-72. PubMed ID: 15755154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering.
    Zhang R; Ma PX
    Macromol Biosci; 2004 Feb; 4(2):100-11. PubMed ID: 15468200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.