BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23988736)

  • 1. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis.
    Chan K; Resnick MA; Gordenin DA
    DNA Repair (Amst); 2013 Nov; 12(11):878-89. PubMed ID: 23988736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base damage within single-strand DNA underlies in vivo hypermutability induced by a ubiquitous environmental agent.
    Chan K; Sterling JF; Roberts SA; Bhagwat AS; Resnick MA; Gordenin DA
    PLoS Genet; 2012; 8(12):e1003149. PubMed ID: 23271983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HMCES Maintains Replication Fork Progression and Prevents Double-Strand Breaks in Response to APOBEC Deamination and Abasic Site Formation.
    Mehta KPM; Lovejoy CA; Zhao R; Heintzman DR; Cortez D
    Cell Rep; 2020 Jun; 31(9):107705. PubMed ID: 32492421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of Rev1, Pol zeta, Pol32 and Pol eta in the bypass of chromosomal abasic sites in Saccharomyces cerevisiae.
    Auerbach PA; Demple B
    Mutagenesis; 2010 Jan; 25(1):63-9. PubMed ID: 19901007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational specificity and genetic control of replicative bypass of an abasic site in yeast.
    Pagès V; Johnson RE; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1170-5. PubMed ID: 18202176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer.
    Gibbs PE; McDonald J; Woodgate R; Lawrence CW
    Genetics; 2005 Feb; 169(2):575-82. PubMed ID: 15520252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenic specificity of endogenously generated abasic sites in Saccharomyces cerevisiae chromosomal DNA.
    Auerbach P; Bennett RA; Bailey EA; Krokan HE; Demple B
    Proc Natl Acad Sci U S A; 2005 Dec; 102(49):17711-6. PubMed ID: 16314579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage.
    Wang Z; Xiao W
    Curr Genet; 2020 Oct; 66(5):1019-1028. PubMed ID: 32623695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of DNA polymerase eta in the bypass of abasic sites in yeast cells.
    Zhao B; Xie Z; Shen H; Wang Z
    Nucleic Acids Res; 2004; 32(13):3984-94. PubMed ID: 15284331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NGS-based analysis of base-substitution signatures created by yeast DNA polymerase eta and zeta on undamaged and abasic DNA templates in vitro.
    Chen Y; Sugiyama T
    DNA Repair (Amst); 2017 Nov; 59():34-43. PubMed ID: 28946034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ.
    Johnson RE; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12455-60. PubMed ID: 22711820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae.
    Siebler HM; Lada AG; Baranovskiy AG; Tahirov TH; Pavlov YI
    DNA Repair (Amst); 2014 Dec; 24():138-149. PubMed ID: 24819597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translesion synthesis of abasic sites by yeast DNA polymerase epsilon.
    Sabouri N; Johansson E
    J Biol Chem; 2009 Nov; 284(46):31555-63. PubMed ID: 19776424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error-free versus mutagenic processing of genomic uracil--relevance to cancer.
    Krokan HE; Sætrom P; Aas PA; Pettersen HS; Kavli B; Slupphaug G
    DNA Repair (Amst); 2014 Jul; 19():38-47. PubMed ID: 24746924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant.
    Wiltrout ME; Walker GC
    Genetics; 2011 Jan; 187(1):21-35. PubMed ID: 20980236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoidance of APOBEC3B-induced mutation by error-free lesion bypass.
    Hoopes JI; Hughes AL; Hobson LA; Cortez LM; Brown AJ; Roberts SA
    Nucleic Acids Res; 2017 May; 45(9):5243-5254. PubMed ID: 28334887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae.
    Kow YW; Bao G; Minesinger B; Jinks-Robertson S; Siede W; Jiang YL; Greenberg MM
    Nucleic Acids Res; 2005; 33(19):6196-202. PubMed ID: 16257982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage--induced mutagenesis in Saccharomyces cerevisiae.
    Daraba A; Gali VK; Halmai M; Haracska L; Unk I
    PLoS Biol; 2014 Jan; 12(1):e1001771. PubMed ID: 24465179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ.
    Dieckman LM; Washington MT
    DNA Repair (Amst); 2013 May; 12(5):367-76. PubMed ID: 23506842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dCMP transferase activity of yeast Rev1 is biologically relevant during the bypass of endogenously generated AP sites.
    Kim N; Mudrak SV; Jinks-Robertson S
    DNA Repair (Amst); 2011 Dec; 10(12):1262-71. PubMed ID: 22024240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.