These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23988798)

  • 41. iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets.
    Jia J; Liu Z; Xiao X; Liu B; Chou KC
    Molecules; 2016 Jan; 21(1):E95. PubMed ID: 26797600
    [TBL] [Abstract][Full Text] [Related]  

  • 42. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach.
    Liu B; Fang L; Liu F; Wang X; Chou KC
    J Biomol Struct Dyn; 2016; 34(1):223-35. PubMed ID: 25645238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2006 Aug; 347(1):150-7. PubMed ID: 16808903
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A set of descriptors for identifying the protein-drug interaction in cellular networking.
    Nanni L; Lumini A; Brahnam S
    J Theor Biol; 2014 Oct; 359():120-8. PubMed ID: 24949993
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-Nearest Neighbor classifiers.
    Chou KC; Shen HB
    J Proteome Res; 2006 Aug; 5(8):1888-97. PubMed ID: 16889410
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC.
    Jia J; Zhang L; Liu Z; Xiao X; Chou KC
    Bioinformatics; 2016 Oct; 32(20):3133-3141. PubMed ID: 27354696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC.
    Cheng X; Xiao X; Chou KC
    Genomics; 2017 Oct; ():. PubMed ID: 28989035
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes.
    Xiao X; Wang P; Chou KC
    J Comput Chem; 2009 Jul; 30(9):1414-23. PubMed ID: 19037861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids.
    Wu ZC; Xiao X; Chou KC
    J Theor Biol; 2010 Nov; 267(1):29-34. PubMed ID: 20696175
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predict potential drug targets from the ion channel proteins based on SVM.
    Huang C; Zhang R; Chen Z; Jiang Y; Shang Z; Sun P; Zhang X; Li X
    J Theor Biol; 2010 Feb; 262(4):750-6. PubMed ID: 19903486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features.
    Wang P; Xiao X; Chou KC
    PLoS One; 2011; 6(8):e23505. PubMed ID: 21858146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites.
    Chou KC; Wu ZC; Xiao X
    Mol Biosyst; 2012 Feb; 8(2):629-41. PubMed ID: 22134333
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM.
    Shen HB; Chou KC
    Protein Eng Des Sel; 2007 Nov; 20(11):561-7. PubMed ID: 17993650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition.
    Xu Y; Wen X; Wen LS; Wu LY; Deng NY; Chou KC
    PLoS One; 2014; 9(8):e105018. PubMed ID: 25121969
    [TBL] [Abstract][Full Text] [Related]  

  • 55. pLoc_bal-mEuk: Predict Subcellular Localization of Eukaryotic Proteins by General PseAAC and Quasi-balancing Training Dataset.
    Chou KC; Cheng X; Xiao X
    Med Chem; 2019; 15(5):472-485. PubMed ID: 30569871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. iPGK-PseAAC: Identify Lysine Phosphoglycerylation Sites in Proteins by Incorporating Four Different Tiers of Amino Acid Pairwise Coupling Information into the General PseAAC.
    Liu LM; Xu Y; Chou KC
    Med Chem; 2017; 13(6):552-559. PubMed ID: 28521678
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting homo-oligomers and hetero-oligomers by pseudo-amino acid composition: an approach from discrete wavelet transformation.
    Qiu JD; Sun XY; Suo SB; Shi SP; Huang SY; Liang RP; Zhang L
    Biochimie; 2011 Jul; 93(7):1132-8. PubMed ID: 21466835
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting protein-protein interactions from sequences in a hybridization space.
    Chou KC; Cai YD
    J Proteome Res; 2006 Feb; 5(2):316-22. PubMed ID: 16457597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phogly-PseAAC: Prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity.
    Xu Y; Ding YX; Ding J; Wu LY; Deng NY
    J Theor Biol; 2015 Aug; 379():10-5. PubMed ID: 25913879
    [TBL] [Abstract][Full Text] [Related]  

  • 60. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier.
    Qiu WR; Xiao X; Xu ZC; Chou KC
    Oncotarget; 2016 Aug; 7(32):51270-51283. PubMed ID: 27323404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.