These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 23988924)
1. Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots. Song HZ; Takemoto K; Miyazawa T; Takatsu M; Iwamoto S; Yamamoto T; Arakawa Y Opt Lett; 2013 Sep; 38(17):3241-4. PubMed ID: 23988924 [TBL] [Abstract][Full Text] [Related]
2. High quality-factor Si/SiO(2)-InP hybrid micropillar cavities with submicrometer diameter for 1.55-μm telecommunication band. Song HZ; Takemoto K; Miyazawa T; Takatsu M; Iwamoto S; Ekawa M; Yamamoto T; Arakawa Y Opt Express; 2015 Jun; 23(12):16264-72. PubMed ID: 26193599 [TBL] [Abstract][Full Text] [Related]
3. Inhibition and enhancement of the spontaneous emission of quantum dots in micropillar cavities with radial-distributed Bragg reflectors. Jakubczyk T; Franke H; Smoleński T; Sciesiek M; Pacuski W; Golnik A; Schmidt-Grund R; Grundmann M; Kruse C; Hommel D; Kossacki P ACS Nano; 2014 Oct; 8(10):9970-8. PubMed ID: 25181393 [TBL] [Abstract][Full Text] [Related]
4. Optical properties of red emitting self-assembled InP/(Al0.20Ga0.80)0.51In0.49P quantum dot based micropillars. Schulz WM; Thomay T; Eichfelder M; Bommer M; Wiesner M; Rossbach R; Jetter M; Bratschitsch R; Leitenstorfer A; Michler P Opt Express; 2010 Jun; 18(12):12543-51. PubMed ID: 20588380 [TBL] [Abstract][Full Text] [Related]
5. Bright Single-Photon Source at 1.3 μm Based on InAs Bilayer Quantum Dot in Micropillar. Chen ZS; Ma B; Shang XJ; Ni HQ; Wang JL; Niu ZC Nanoscale Res Lett; 2017 Dec; 12(1):378. PubMed ID: 28571308 [TBL] [Abstract][Full Text] [Related]
6. InGaAsP/InP Nanocavity for Single-Photon Source at 1.55-μm Telecommunication Band. Song HZ; Hadi M; Zheng Y; Shen B; Zhang L; Ren Z; Gao R; Wang ZM Nanoscale Res Lett; 2017 Dec; 12(1):128. PubMed ID: 28235366 [TBL] [Abstract][Full Text] [Related]
7. Polarized and Bright Telecom C-Band Single-Photon Source from InP-Based Quantum Dots Coupled to Elliptical Bragg Gratings. Ge Z; Chung T; He YM; Benyoucef M; Huo Y Nano Lett; 2024 Feb; 24(5):1746-1752. PubMed ID: 38286024 [TBL] [Abstract][Full Text] [Related]
8. Broadband high-reflective distributed Bragg reflectors based on amorphous silicon films for semiconductor laser facet coatings. Guan XY; Leem JW; Lee SH; Jang HJ; Kim JH; Hann S; Yu JS Appl Opt; 2015 Feb; 54(5):1027-31. PubMed ID: 25968017 [TBL] [Abstract][Full Text] [Related]
9. Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous "2.5 D" Photonic Crystal. Ben Bakir B; Seassal C; Letartre X; Regreny P; Gendry M; Viktorovitch P; Zussy M; Di Cioccio L; Fedeli JM Opt Express; 2006 Oct; 14(20):9269-76. PubMed ID: 19529309 [TBL] [Abstract][Full Text] [Related]
10. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots. Kruse C; Pacuski W; Jakubczyk T; Kobak J; Gaj JA; Frank K; Schowalter M; Rosenauer A; Florian M; Jahnke F; Hommel D Nanotechnology; 2011 Jul; 22(28):285204. PubMed ID: 21654032 [TBL] [Abstract][Full Text] [Related]
11. Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Kolatschek S; Nawrath C; Bauer S; Huang J; Fischer J; Sittig R; Jetter M; Portalupi SL; Michler P Nano Lett; 2021 Sep; 21(18):7740-7745. PubMed ID: 34478316 [TBL] [Abstract][Full Text] [Related]
12. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Ding X; He Y; Duan ZC; Gregersen N; Chen MC; Unsleber S; Maier S; Schneider C; Kamp M; Höfling S; Lu CY; Pan JW Phys Rev Lett; 2016 Jan; 116(2):020401. PubMed ID: 26824530 [TBL] [Abstract][Full Text] [Related]
13. A deterministic quantum dot micropillar single photon source with >65% extraction efficiency based on fluorescence imaging method. Liu S; Wei Y; Su R; Su R; Ma B; Chen Z; Ni H; Niu Z; Yu Y; Wei Y; Wang X; Yu S Sci Rep; 2017 Oct; 7(1):13986. PubMed ID: 29070846 [TBL] [Abstract][Full Text] [Related]
14. InAs/GaInAs(N) quantum dots on GaAs substrate for single photon emitters above 1300 nm. Strauss M; Höfling S; Forchel A Nanotechnology; 2009 Dec; 20(50):505601. PubMed ID: 19907066 [TBL] [Abstract][Full Text] [Related]
15. Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission. Hepp S; Bauer S; Hornung F; Schwartz M; Portalupi SL; Jetter M; Michler P Opt Express; 2018 Nov; 26(23):30614-30622. PubMed ID: 30469955 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous integration of single InAs/InP quantum dots with the SOI chip using direct bonding. Burakowski M; Holewa P; Mrowiński P; Sakanas A; Musiał A; Sȩk G; Yvind K; Semenova E; Syperek M Opt Express; 2024 Mar; 32(7):10874-10886. PubMed ID: 38570950 [TBL] [Abstract][Full Text] [Related]
18. Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity. Phillips CL; Brash AJ; Godsland M; Martin NJ; Foster A; Tomlinson A; Dost R; Babazadeh N; Sala EM; Wilson L; Heffernan J; Skolnick MS; Fox AM Sci Rep; 2024 Feb; 14(1):4450. PubMed ID: 38396018 [TBL] [Abstract][Full Text] [Related]
19. Room temperature fabrication of dielectric Bragg reflectors composed of a CaF2/ZnS multilayered coating. Muallem M; Palatnik A; Nessim GD; Tischler YR ACS Appl Mater Interfaces; 2015 Jan; 7(1):474-81. PubMed ID: 25510469 [TBL] [Abstract][Full Text] [Related]
20. Design of resonant cavity structure for efficient high-temperature operation of single-photon avalanche photodiodes. Zavvari M; Abedi K; Karimi M Appl Opt; 2014 May; 53(15):3311-7. PubMed ID: 24922220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]