BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23990105)

  • 1. Common missense variant of monocarboxylate transporter 9 (MCT9/SLC16A9) gene is associated with renal overload gout, but not with all gout susceptibility.
    Nakayama A; Matsuo H; Shimizu T; Ogata H; Takada Y; Nakashima H; Nakamura T; Shimizu S; Chiba T; Sakiyama M; Ushiyama C; Takada T; Inoue K; Kawai S; Hishida A; Wakai K; Hamajima N; Ichida K; Sakurai Y; Kato Y; Shimizu T; Shinomiya N
    Hum Cell; 2013 Dec; 26(4):133-6. PubMed ID: 23990105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout.
    Chiba T; Matsuo H; Kawamura Y; Nagamori S; Nishiyama T; Wei L; Nakayama A; Nakamura T; Sakiyama M; Takada T; Taketani Y; Suma S; Naito M; Oda T; Kumagai H; Moriyama Y; Ichida K; Shimizu T; Kanai Y; Shinomiya N
    Arthritis Rheumatol; 2015 Jan; 67(1):281-7. PubMed ID: 25252215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperuricemia Subtypes Classified According to Renal Uric Acid Handling Manifesting Distinct Phenotypic and Genetic Profiles in People With Gout.
    Qi H; Sun M; Terkeltaub R; Merriman TR; Chen H; Li Z; Ji A; Xue X; Sun W; Wang C; Li X; He Y; Cui L; Dalbeth N; Li C
    Arthritis Rheumatol; 2024 Jul; 76(7):1130-1140. PubMed ID: 38412854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ABCG2 dysfunction increases the risk of renal overload hyperuricemia.
    Matsuo H; Takada T; Nakayama A; Shimizu T; Sakiyama M; Shimizu S; Chiba T; Nakashima H; Nakamura T; Takada Y; Sakurai Y; Hosoya T; Shinomiya N; Ichida K
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(4-6):266-74. PubMed ID: 24940678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout.
    Sakiyama M; Matsuo H; Shimizu S; Nakashima H; Nakayama A; Chiba T; Naito M; Takada T; Suzuki H; Hamajima N; Ichida K; Shimizu T; Shinomiya N
    Drug Metab Pharmacokinet; 2014; 29(2):208-10. PubMed ID: 24025986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload.
    Matsuo H; Nakayama A; Sakiyama M; Chiba T; Shimizu S; Kawamura Y; Nakashima H; Nakamura T; Takada Y; Oikawa Y; Takada T; Nakaoka H; Abe J; Inoue H; Wakai K; Kawai S; Guang Y; Nakagawa H; Ito T; Niwa K; Yamamoto K; Sakurai Y; Suzuki H; Hosoya T; Ichida K; Shimizu T; Shinomiya N
    Sci Rep; 2014 Jan; 4():3755. PubMed ID: 24441388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.
    Woodward OM; Köttgen A; Coresh J; Boerwinkle E; Guggino WB; Köttgen M
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10338-42. PubMed ID: 19506252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes.
    Matsuo H; Yamamoto K; Nakaoka H; Nakayama A; Sakiyama M; Chiba T; Takahashi A; Nakamura T; Nakashima H; Takada Y; Danjoh I; Shimizu S; Abe J; Kawamura Y; Terashige S; Ogata H; Tatsukawa S; Yin G; Okada R; Morita E; Naito M; Tokumasu A; Onoue H; Iwaya K; Ito T; Takada T; Inoue K; Kato Y; Nakamura Y; Sakurai Y; Suzuki H; Kanai Y; Hosoya T; Hamajima N; Inoue I; Kubo M; Ichida K; Ooyama H; Shimizu T; Shinomiya N
    Ann Rheum Dis; 2016 Apr; 75(4):652-9. PubMed ID: 25646370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Two Dysfunctional Variants in the ABCG2 Urate Transporter Associated with Pediatric-Onset of Familial Hyperuricemia and Early-Onset Gout.
    Toyoda Y; Pavelcová K; Bohatá J; Ješina P; Kubota Y; Suzuki H; Takada T; Stiburkova B
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genetic basis of gout.
    Merriman TR; Choi HK; Dalbeth N
    Rheum Dis Clin North Am; 2014 May; 40(2):279-90. PubMed ID: 24703347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-Exome Sequencing Reveals a Rare Missense Variant in
    Huang XF; Sun L; Zhang C; Zhou Z; Chen H; Zhang L; Brown MA; Xia X
    Biomed Res Int; 2020; 2020():4321419. PubMed ID: 32090094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A common variant of MAF/c-MAF, transcriptional factor gene in the kidney, is associated with gout susceptibility.
    Higashino T; Matsuo H; Okada Y; Nakashima H; Shimizu S; Sakiyama M; Tadokoro S; Nakayama A; Kawaguchi M; Komatsu M; Hishida A; Nakatochi M; Ooyama H; Imaki J; Shinomiya N
    Hum Cell; 2018 Jan; 31(1):10-13. PubMed ID: 29080939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent insights into the pathogenesis of hyperuricaemia and gout.
    Riches PL; Wright AF; Ralston SH
    Hum Mol Genet; 2009 Oct; 18(R2):R177-84. PubMed ID: 19808794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetics of gout.
    Choi HK; Zhu Y; Mount DB
    Curr Opin Rheumatol; 2010 Mar; 22(2):144-51. PubMed ID: 20110790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide meta-analysis between renal overload type and renal underexcretion type of clinically defined gout in Japanese populations.
    Toyoda Y; Nakayama A; Nakatochi M; Kawamura Y; Nakaoka H; Yamamoto K; Shimizu S; Ooyama H; Ooyama K; Shimizu T; Nagase M; Hidaka Y; Ichida K; Inoue I; Shinomiya N; Matsuo H;
    Mol Genet Metab; 2022 Jul; 136(3):186-189. PubMed ID: 35148957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients.
    Stiburkova B; Pavelcova K; Pavlikova M; Ješina P; Pavelka K
    Arthritis Res Ther; 2019 Mar; 21(1):77. PubMed ID: 30894219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of URAT1/SLC22A12 nonfunctional variants, R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression.
    Sakiyama M; Matsuo H; Shimizu S; Nakashima H; Nakamura T; Nakayama A; Higashino T; Naito M; Suma S; Hishida A; Satoh T; Sakurai Y; Takada T; Ichida K; Ooyama H; Shimizu T; Shinomiya N
    Sci Rep; 2016 Jan; 6():20148. PubMed ID: 26821810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased extra-renal urate excretion is a common cause of hyperuricemia.
    Ichida K; Matsuo H; Takada T; Nakayama A; Murakami K; Shimizu T; Yamanashi Y; Kasuga H; Nakashima H; Nakamura T; Takada Y; Kawamura Y; Inoue H; Okada C; Utsumi Y; Ikebuchi Y; Ito K; Nakamura M; Shinohara Y; Hosoyamada M; Sakurai Y; Shinomiya N; Hosoya T; Suzuki H
    Nat Commun; 2012 Apr; 3():764. PubMed ID: 22473008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association analysis of the beta-3 adrenergic receptor Trp64Arg (rs4994) polymorphism with urate and gout.
    Fatima T; Altaf S; Phipps-Green A; Topless R; Flynn TJ; Stamp LK; Dalbeth N; Merriman TR
    Rheumatol Int; 2016 Feb; 36(2):255-61. PubMed ID: 26410617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion.
    Hoque KM; Dixon EE; Lewis RM; Allan J; Gamble GD; Phipps-Green AJ; Halperin Kuhns VL; Horne AM; Stamp LK; Merriman TR; Dalbeth N; Woodward OM
    Nat Commun; 2020 Jun; 11(1):2767. PubMed ID: 32488095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.