BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 23990376)

  • 1. Inflammation: therapeutic targets for diabetic neuropathy.
    Zhou J; Zhou S
    Mol Neurobiol; 2014 Feb; 49(1):536-46. PubMed ID: 23990376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nrf2: a potential therapeutic target for diabetic neuropathy.
    Kumar A; Mittal R
    Inflammopharmacology; 2017 Aug; 25(4):393-402. PubMed ID: 28353124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: targeting Nrf2/HO-1/NF-kB and COX signalling pathway.
    Mittal R; Kumar A; Singh DP; Bishnoi M; Nag TC
    Inflammopharmacology; 2018 Jun; 26(3):755-768. PubMed ID: 29094308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy.
    Ganesh Yerra V; Negi G; Sharma SS; Kumar A
    Redox Biol; 2013 Aug; 1(1):394-7. PubMed ID: 24024177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neuroprotective effects of micronized PEA (PEA-m) formulation on diabetic peripheral neuropathy in mice.
    Impellizzeri D; Peritore AF; Cordaro M; Gugliandolo E; Siracusa R; Crupi R; D'Amico R; Fusco R; Evangelista M; Cuzzocrea S; Di Paola R
    FASEB J; 2019 Oct; 33(10):11364-11380. PubMed ID: 31344333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy.
    Navarro-González JF; Mora-Fernández C; Muros de Fuentes M; García-Pérez J
    Nat Rev Nephrol; 2011 Jun; 7(6):327-40. PubMed ID: 21537349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy.
    Negi G; Nakkina V; Kamble P; Sharma SS
    Pharmacol Res; 2015 Dec; 102():158-67. PubMed ID: 26432957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetic neuropathy and nerve regeneration.
    Yasuda H; Terada M; Maeda K; Kogawa S; Sanada M; Haneda M; Kashiwagi A; Kikkawa R
    Prog Neurobiol; 2003 Mar; 69(4):229-85. PubMed ID: 12757748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JSH-23 targets nuclear factor-kappa B and reverses various deficits in experimental diabetic neuropathy: effect on neuroinflammation and antioxidant defence.
    Kumar A; Negi G; Sharma SS
    Diabetes Obes Metab; 2011 Aug; 13(8):750-8. PubMed ID: 21447040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets.
    Dewanjee S; Das S; Das AK; Bhattacharjee N; Dihingia A; Dua TK; Kalita J; Manna P
    Eur J Pharmacol; 2018 Aug; 833():472-523. PubMed ID: 29966615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of NF-κB and NF-κB regulated oxidative stress and neuroinflammation by BAY 11-7082 (IκB phosphorylation inhibitor) in experimental diabetic neuropathy.
    Kumar A; Negi G; Sharma SS
    Biochimie; 2012 May; 94(5):1158-65. PubMed ID: 22342224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway.
    Cameron NE; Cotter MA
    Curr Drug Targets; 2008 Jan; 9(1):60-7. PubMed ID: 18220713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy.
    Chopra K; Tiwari V; Arora V; Kuhad A
    J Pain; 2010 Oct; 11(10):950-7. PubMed ID: 20418182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Mobility Group Box 1 Protein Signaling in Painful Diabetic Neuropathy.
    Thakur V; Sadanandan J; Chattopadhyay M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway.
    Zhang W; Yu H; Lin Q; Liu X; Cheng Y; Deng B
    Aging (Albany NY); 2021 Mar; 13(7):10659-10671. PubMed ID: 33770763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes.
    Negi G; Kumar A; Sharma SS
    Curr Neurovasc Res; 2011 Nov; 8(4):294-304. PubMed ID: 22023613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GLP‑1R agonists ameliorate peripheral nerve dysfunction and inflammation via p38 MAPK/NF‑κB signaling pathways in streptozotocin‑induced diabetic rats.
    Ma J; Shi M; Zhang X; Liu X; Chen J; Zhang R; Wang X; Zhang H
    Int J Mol Med; 2018 May; 41(5):2977-2985. PubMed ID: 29484377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the Neuroprotective Role of Glucagon-like Peptide-1 Agonists in Diabetic Neuropathy: Current Perspective and Future Directions.
    Mehta K; Behl T; Kumar A; Uddin MS; Zengin G; Arora S
    Curr Protein Pept Sci; 2021; 22(1):4-18. PubMed ID: 33292149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory mediators in diabetic and non-diabetic lumbosacral radiculoplexus neuropathy.
    Kawamura N; Dyck PJ; Schmeichel AM; Engelstad JK; Low PA; Dyck PJ
    Acta Neuropathol; 2008 Feb; 115(2):231-9. PubMed ID: 18064475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving Insights into the Pathophysiology of Diabetic Neuropathy: Implications of Malfunctioning Glia and Discovery of Novel Therapeutic Targets.
    Rahman MH; Jha MK; Suk K
    Curr Pharm Des; 2016; 22(6):738-57. PubMed ID: 26635266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.