BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23990548)

  • 1. Cell biology. Strength under tension.
    Bainer R; Weaver V
    Science; 2013 Aug; 341(6149):965-6. PubMed ID: 23990548
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanotransduction: Lamin A for tension relief.
    Schuldt A
    Nat Rev Mol Cell Biol; 2013 Oct; 14(10):610. PubMed ID: 24061223
    [No Abstract]   [Full Text] [Related]  

  • 3. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation.
    Swift J; Ivanovska IL; Buxboim A; Harada T; Dingal PC; Pinter J; Pajerowski JD; Spinler KR; Shin JW; Tewari M; Rehfeldt F; Speicher DW; Discher DE
    Science; 2013 Aug; 341(6149):1240104. PubMed ID: 23990565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free mass spectrometry exploits dozens of detected peptides to quantify lamins in wildtype and knockdown cells.
    Swift J; Harada T; Buxboim A; Shin JW; Tang HY; Speicher DW; Discher DE
    Nucleus; 2013; 4(6):450-9. PubMed ID: 24448480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crucial Role of Lamin A/C in the Migration and Differentiation of MSCs in Bone.
    Alcorta-Sevillano N; Macías I; Rodríguez CI; Infante A
    Cells; 2020 May; 9(6):. PubMed ID: 32466483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of lamin A/C in mesenchymal stem cell differentiation.
    Zhang B; Yang Y; Keyimu R; Hao J; Zhao Z; Ye R
    J Physiol Biochem; 2019 Feb; 75(1):11-18. PubMed ID: 30706289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes.
    Buxboim A; Irianto J; Swift J; Athirasala A; Shin JW; Rehfeldt F; Discher DE
    Mol Biol Cell; 2017 Nov; 28(23):3333-3348. PubMed ID: 28931598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotopography alters nuclear protein expression, proliferation and differentiation of human mesenchymal stem/stromal cells.
    Kulangara K; Yang J; Chellappan M; Yang Y; Leong KW
    PLoS One; 2014; 9(12):e114698. PubMed ID: 25521962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical stretch-induced osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (hJBMMSCs) via inhibition of the NF-κB pathway.
    Chen X; Liu Y; Ding W; Shi J; Li S; Liu Y; Wu M; Wang H
    Cell Death Dis; 2018 Feb; 9(2):207. PubMed ID: 29434225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of lamin A/C by short hairpin RNAs promotes adipocyte lineage commitment in mesenchymal progenitor cell line, ROB-C26.
    Naito M; Omoteyama K; Mikami Y; Takagi M; Takahashi T
    Histochem Cell Biol; 2012 Feb; 137(2):235-47. PubMed ID: 22119912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138.
    Wu J; Zhao J; Sun L; Pan Y; Wang H; Zhang WB
    Bone; 2018 Mar; 108():62-70. PubMed ID: 29253550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells.
    Gungordu HI; Bao M; van Helvert S; Jansen JA; Leeuwenburgh SCG; Walboomers XF
    J Tissue Eng Regen Med; 2019 Dec; 13(12):2279-2290. PubMed ID: 31483956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintenance of Neurogenic Differentiation Potential in Passaged Bone Marrow-Derived Human Mesenchymal Stem Cells Under Simulated Microgravity Conditions.
    Koaykul C; Kim MH; Kawahara Y; Yuge L; Kino-Oka M
    Stem Cells Dev; 2019 Dec; 28(23):1552-1561. PubMed ID: 31588849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress.
    Liu L; Yuan W; Wang J
    Biomech Model Mechanobiol; 2010 Dec; 9(6):659-70. PubMed ID: 20309603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretome analysis of in vitro aged human mesenchymal stem cells reveals IGFBP7 as a putative factor for promoting osteogenesis.
    Infante A; Rodríguez CI
    Sci Rep; 2018 Mar; 8(1):4632. PubMed ID: 29545581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling cellular biomechanics of human mesenchymal stem cells.
    Titushkin IA; Cho MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2090-3. PubMed ID: 19964578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIF-1α-TWIST pathway restrains cyclic mechanical stretch-induced osteogenic differentiation of bone marrow mesenchymal stem cells.
    Liu Y; Huang X; Yu H; Yang J; Li Y; Yuan X; Guo Q
    Connect Tissue Res; 2019 Nov; 60(6):544-554. PubMed ID: 30938209
    [No Abstract]   [Full Text] [Related]  

  • 18. ROCK-TAZ signaling axis regulates mechanical tension-induced osteogenic differentiation of rat cranial sagittal suture mesenchymal stem cells.
    Li W; Zhao J; Wang J; Sun L; Xu H; Sun W; Pan Y; Wang H; Zhang WB
    J Cell Physiol; 2020 Sep; 235(9):5972-5984. PubMed ID: 31970784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel.
    Aziz AH; Eckstein K; Ferguson VL; Bryant SJ
    J Tissue Eng Regen Med; 2019 Jun; 13(6):946-959. PubMed ID: 30793536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Mechanics-Modulated Hydrogels to Regulate the Differentiation of Stem-Cell Spheroids in Soft Microniches and Modeling of the Nonlinear Behavior.
    Zhang J; Yang H; Abali BE; Li M; Xia Y; Haag R
    Small; 2019 Jul; 15(30):e1901920. PubMed ID: 31183958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.