These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23990754)

  • 1. Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling.
    Pajchel L; Kolodziejski W
    J Nanopart Res; 2013; 15(8):1868. PubMed ID: 23990754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus-31 spin-lattice NMR relaxation in bone apatite and its mineral standards.
    Kaflak A; Kolodziejski W
    Solid State Nucl Magn Reson; 2007 Jul; 31(4):174-83. PubMed ID: 17621456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites.
    Errassifi F; Sarda S; Barroug A; Legrouri A; Sfihi H; Rey C
    J Colloid Interface Sci; 2014 Apr; 420():101-11. PubMed ID: 24559707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of solution composition on morphological and structural features of carbonated calcium apatites.
    Shimoda S; Aoba T; Moreno EC; Miake Y
    J Dent Res; 1990 Nov; 69(11):1731-40. PubMed ID: 2229611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure, morphology and crystal growth of biogenic and synthetic apatites.
    Heywood BR; Sparks NH; Shellis RP; Weiner S; Mann S
    Connect Tissue Res; 1990; 25(2):103-19. PubMed ID: 2175692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites.
    Pascaud P; Gras P; Coppel Y; Rey C; Sarda S
    Langmuir; 2013 Feb; 29(7):2224-32. PubMed ID: 23317459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials.
    Pasteris JD; Wopenka B; Freeman JJ; Rogers K; Valsami-Jones E; van der Houwen JA; Silva MJ
    Biomaterials; 2004 Jan; 25(2):229-38. PubMed ID: 14585710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration of hydroxyl groups in dental apatites: a solid-state 1H MAS NMR study using inverse 31P -->1H cross-polarization.
    Kolmas J; Kolodziejski W
    Chem Commun (Camb); 2007 Nov; (42):4390-2. PubMed ID: 17957296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state (2)H NMR.
    Yoder CH; Pasteris JD; Worcester KN; Schermerhorn DV
    Calcif Tissue Int; 2012 Jan; 90(1):60-7. PubMed ID: 22057814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.
    Von Euw S; Ajili W; Chan-Chang TH; Delices A; Laurent G; Babonneau F; Nassif N; Azaïs T
    Acta Biomater; 2017 Sep; 59():351-360. PubMed ID: 28690009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite.
    Jäger C; Welzel T; Meyer-Zaika W; Epple M
    Magn Reson Chem; 2006 Jun; 44(6):573-80. PubMed ID: 16395729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation, analysis, and characterization of carbonated apatites.
    Nelson DG; Featherstone JD
    Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A solid-state NMR study of selenium substitution into nanocrystalline hydroxyapatite.
    Kolmas J; Kuras M; Oledzka E; Sobczak M
    Int J Mol Sci; 2015 May; 16(5):11452-64. PubMed ID: 25997001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals.
    Davidenko N; Carrodeguas RG; Peniche C; Solís Y; Cameron RE
    Acta Biomater; 2010 Feb; 6(2):466-76. PubMed ID: 19632363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state NMR and IR characterization of commercial xenogeneic biomaterials used as bone substitutes.
    Kolmas J; Szwaja M; Kolodziejski W
    J Pharm Biomed Anal; 2012 Mar; 61():136-41. PubMed ID: 22169471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic magnesium-carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger.
    Iafisco M; Ruffini A; Adamiano A; Sprio S; Tampieri A
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():212-9. PubMed ID: 24411371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The solid-state proton NMR study of bone using a dipolar filter: apatite hydroxyl content
    Kaflak A; Moskalewski S; Kolodziejski W
    RSC Adv; 2019 May; 9(29):16909-16918. PubMed ID: 35516370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite.
    Wilson RM; Elliott JC; Dowker SE; Rodriguez-Lorenzo LM
    Biomaterials; 2005 Apr; 26(11):1317-27. PubMed ID: 15475062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, crystal chemistry and density of enamel apatites.
    Elliott JC
    Ciba Found Symp; 1997; 205():54-67; discussion 67-72. PubMed ID: 9189617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes to the Disordered Phase and Apatite Crystallite Morphology during Mineralization by an Acidic Mineral Binding Peptide from Osteonectin.
    Iline-Vul T; Matlahov I; Grinblat J; Keinan-Adamsky K; Goobes G
    Biomacromolecules; 2015 Sep; 16(9):2656-63. PubMed ID: 26207448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.