These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23990927)

  • 1. De novo transcriptome of Brassica juncea seed coat and identification of genes for the biosynthesis of flavonoids.
    Liu X; Lu Y; Yuan Y; Liu S; Guan C; Chen S; Liu Z
    PLoS One; 2013; 8(8):e71110. PubMed ID: 23990927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite Profiling and Transcriptome Analysis Provide Insight into Seed Coat Color in
    Shen S; Tang Y; Zhang C; Yin N; Mao Y; Sun F; Chen S; Hu R; Liu X; Shang G; Liu L; Lu K; Li J; Qu C
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers.
    Wu ZG; Jiang W; Mantri N; Bao XQ; Chen SL; Tao ZM
    BMC Genomics; 2015 Apr; 16(1):346. PubMed ID: 25924983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Yellow Seed Color Genes Using Bulked Segregant RNA Sequencing in
    Wang Y; Lu H; Liu X; Liu L; Zhang W; Huang Z; Li K; Xu A
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus.
    Marles MA; Gruber MY; Scoles GJ; Muir AD
    Phytochemistry; 2003 Mar; 62(5):663-72. PubMed ID: 12620317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality.
    Jiang J; Zhu S; Yuan Y; Wang Y; Zeng L; Batley J; Wang YP
    BMC Plant Biol; 2019 May; 19(1):203. PubMed ID: 31096923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus.
    Wang F; He J; Shi J; Zheng T; Xu F; Wu G; Liu R; Liu S
    G3 (Bethesda); 2016 Apr; 6(4):1073-81. PubMed ID: 26896439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative transcriptome and flavonoids components analysis reveal the structural genes responsible for the yellow seed coat color of
    Ren Y; Zhang N; Li R; Ma X; Zhang L
    PeerJ; 2021; 9():e10770. PubMed ID: 33717670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation.
    Liang W; Ni L; Carballar-LejarazĂș R; Zou X; Sun W; Wu L; Yuan X; Mao Y; Huang W; Zou S
    BMC Genomics; 2019 Jan; 20(1):24. PubMed ID: 30626333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of two anthocyanidin reductase genes and three red-brown soybean accessions with reduced anthocyanidin reductase 1 mRNA, activity, and seed coat proanthocyanidin amounts.
    Kovinich N; Saleem A; Arnason JT; Miki B
    J Agric Food Chem; 2012 Jan; 60(2):574-84. PubMed ID: 22107112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.).
    Wei H; Chen X; Zong X; Shu H; Gao D; Liu Q
    PLoS One; 2015; 10(3):e0121164. PubMed ID: 25799516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening.
    Freixas Coutin JA; Munholland S; Silva A; Subedi S; Lukens L; Crosby WL; Pauls KP; Bozzo GG
    BMC Plant Biol; 2017 May; 17(1):89. PubMed ID: 28545577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea.
    Bhardwaj AR; Joshi G; Kukreja B; Malik V; Arora P; Pandey R; Shukla RN; Bankar KG; Katiyar-Agarwal S; Goel S; Jagannath A; Kumar A; Agarwal M
    BMC Plant Biol; 2015 Jan; 15():9. PubMed ID: 25604693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus.
    Zhang K; Lu K; Qu C; Liang Y; Wang R; Chai Y; Li J
    PLoS One; 2013; 8(4):e61247. PubMed ID: 23613820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes.
    Kovinich N; Saleem A; Arnason JT; Miki B
    BMC Genomics; 2011 Jul; 12():381. PubMed ID: 21801362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Assembly and Characterization of Stress Transcriptome in a Salinity-Tolerant Variety CS52 of Brassica juncea.
    Sharma R; Mishra M; Gupta B; Parsania C; Singla-Pareek SL; Pareek A
    PLoS One; 2015; 10(5):e0126783. PubMed ID: 25970274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic Analysis of Seed Coats in Yellow-Seeded
    Hong M; Hu K; Tian T; Li X; Chen L; Zhang Y; Yi B; Wen J; Ma C; Shen J; Fu T; Tu J
    Front Plant Sci; 2017; 8():1674. PubMed ID: 29051765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus.
    Lian J; Lu X; Yin N; Ma L; Lu J; Liu X; Li J; Lu J; Lei B; Wang R; Chai Y
    Plant Sci; 2017 Jan; 254():32-47. PubMed ID: 27964783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo transcriptome of safflower and the identification of putative genes for oleosin and the biosynthesis of flavonoids.
    Li H; Dong Y; Yang J; Liu X; Wang Y; Yao N; Guan L; Wang N; Wu J; Li X
    PLoS One; 2012; 7(2):e30987. PubMed ID: 22363528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.