BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23991029)

  • 1. Theoretical predictions of lactate and hydrogen ion distributions in tumours.
    Al-Husari M; Webb SD
    PLoS One; 2013; 8(8):e72020. PubMed ID: 23991029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth.
    Al-Husari M; Murdoch C; Webb SD
    J Math Biol; 2014 Oct; 69(4):839-73. PubMed ID: 23982261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)/H(+) antiporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism.
    Counillon L; Bouret Y; Marchiq I; Pouysségur J
    Biochim Biophys Acta; 2016 Oct; 1863(10):2465-80. PubMed ID: 26944480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical modelling of tumour acidity: regulation of intracellular pH.
    Webb SD; Sherratt JA; Fish RG
    J Theor Biol; 1999 Jan; 196(2):237-50. PubMed ID: 9990741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat shock- and ethanol-induced ionic changes in C6 rat glioma cells determined by NMR and fluorescence spectroscopy.
    Skrandies S; Bremer B; Pilatus U; Mayer A; Neuhaus-Steinmetz U; Rensing L
    Brain Res; 1997 Jan; 746(1-2):220-30. PubMed ID: 9037501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of tumour intracellular pH: a mathematical model examining the interplay between H+ and lactate.
    Al-Husari M; Webb SD
    J Theor Biol; 2013 Apr; 322():58-71. PubMed ID: 23340437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of Na+/H+ exchanger and its central role in regulation of pH and Na+ in cardiac myocytes.
    Cha CY; Oka C; Earm YE; Wakabayashi S; Noma A
    Biophys J; 2009 Nov; 97(10):2674-83. PubMed ID: 19917220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of intracellular calcium in the MCT-mediated uptake of lactic acid by HeLa cells.
    Cheeti S; Lee CH
    Mol Pharm; 2010 Feb; 7(1):169-76. PubMed ID: 19905008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of pH regulation in tumor cells: Direct interaction between proton-coupled lactate transporters and cancer-associated carbonic anhydrase.
    Hiremath SA; Surulescu C; Jamali S; Ames S; Deitmer JW; Becker HM
    Math Biosci Eng; 2018 Dec; 16(1):320-337. PubMed ID: 30674122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of intracellular pH regulators responsible for acid extrusion in human radial artery smooth muscle cells.
    Lee CY; Tsai YT; Chang CY; Chang YY; Cheng TH; Tsai CS; Loh SH
    Chin J Physiol; 2014 Oct; 57(5):238-48. PubMed ID: 25241983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Value of pH regulators in the diagnosis, prognosis and treatment of cancer.
    Granja S; Tavares-Valente D; Queirós O; Baltazar F
    Semin Cancer Biol; 2017 Apr; 43():17-34. PubMed ID: 28065864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in myoplasmic pH and calcium concentration during exposure to lactate in isolated rat ventricular myocytes.
    Cairns SP; Westerblad H; Allen DG
    J Physiol; 1993 May; 464():561-74. PubMed ID: 8229818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bicarbonate, NBCe1, NHE, and carbonic anhydrase activity enhance lactate-H+ transport in bovine corneal endothelium.
    Nguyen TT; Bonanno JA
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8086-93. PubMed ID: 21896839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of intracellular pH in human melanoma: potential therapeutic implications.
    Wahl ML; Owen JA; Burd R; Herlands RA; Nogami SS; Rodeck U; Berd D; Leeper DB; Owen CS
    Mol Cancer Ther; 2002 Jun; 1(8):617-28. PubMed ID: 12479222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular pH regulatory mechanism in human atrial myocardium: functional evidence for Na(+)/H(+) exchanger and Na(+)/HCO(3)(-) symporter.
    Loh SH; Chen WH; Chiang CH; Tsai CS; Lee GC; Jin JS; Cheng TH; Chen JJ
    J Biomed Sci; 2002; 9(3):198-205. PubMed ID: 12065894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton channels and exchangers in cancer.
    Spugnini EP; Sonveaux P; Stock C; Perez-Sayans M; De Milito A; Avnet S; Garcìa AG; Harguindey S; Fais S
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2715-26. PubMed ID: 25449995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spatial organization of proton and lactate transport in a rat brain tumor.
    Grillon E; Farion R; Fablet K; De Waard M; Tse CM; Donowitz M; Rémy C; Coles JA
    PLoS One; 2011 Feb; 6(2):e17416. PubMed ID: 21390324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na(+)/H(+)exchangers: linking osmotic dysequilibrium to modified cell function.
    Ritter M; Fuerst J; Wöll E; Chwatal S; Gschwentner M; Lang F; Deetjen P; Paulmichl M
    Cell Physiol Biochem; 2001; 11(1):1-18. PubMed ID: 11275678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging links between endosomal pH and cancer.
    Ko M; Quiñones-Hinojosa A; Rao R
    Cancer Metastasis Rev; 2020 Jun; 39(2):519-534. PubMed ID: 32253638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: role of lactate removal, extracellular sodium and sodium/hydrogen exchange.
    Pirttilä TR; Kauppinen RA
    Neuroscience; 1992; 47(1):155-64. PubMed ID: 1315933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.