These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23992063)

  • 1. Vacuum-assisted generation and control of atomic coherences at x-ray energies.
    Heeg KP; Wille HC; Schlage K; Guryeva T; Schumacher D; Uschmann I; Schulze KS; Marx B; Kämpfer T; Paulus GG; Röhlsberger R; Evers J
    Phys Rev Lett; 2013 Aug; 111(7):073601. PubMed ID: 23992063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent control of the waveforms of recoilless γ-ray photons.
    Vagizov F; Antonov V; Radeonychev YV; Shakhmuratov RN; Kocharovskaya O
    Nature; 2014 Apr; 508(7494):80-3. PubMed ID: 24670656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity QED with a Bose-Einstein condensate.
    Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T
    Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing electric and magnetic vacuum fluctuations with quantum dots.
    Tighineanu P; Andersen ML; Sørensen AS; Stobbe S; Lodahl P
    Phys Rev Lett; 2014 Jul; 113(4):043601. PubMed ID: 25105618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum interferences in cooperative Dicke emission from spatial variation of the laser phase.
    Das S; Agarwal GS; Scully MO
    Phys Rev Lett; 2008 Oct; 101(15):153601. PubMed ID: 18999596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuum-induced transparency.
    Tanji-Suzuki H; Chen W; Landig R; Simon J; Vuletić V
    Science; 2011 Sep; 333(6047):1266-9. PubMed ID: 21817017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method?
    Pakoulev AV; Rickard MA; Kornau KM; Mathew NA; Yurs LA; Block SB; Wright JC
    Acc Chem Res; 2009 Sep; 42(9):1310-21. PubMed ID: 19445479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical two-dimensional fourier transform spectroscopy of semiconductor quantum wells.
    Cundiff ST; Zhang T; Bristow AD; Karaiskaj D; Dai X
    Acc Chem Res; 2009 Sep; 42(9):1423-32. PubMed ID: 19555068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoherence of multiple quantum coherences generated from a dipolar ordered state.
    González CE; Segnorile HH; Zamar RC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011705. PubMed ID: 21405703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Storage of quantum coherences as phase-labelled local polarization in solid-state nuclear magnetic resonance.
    Franzoni MB; Acosta RH; Pastawski HM; Levstein PR
    Philos Trans A Math Phys Eng Sci; 2012 Oct; 370(1976):4713-33. PubMed ID: 22946037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent perfect absorption in Tavis-Cummings models.
    Wang Z; Khatiwada P; Wang D; Mirza IM
    Opt Express; 2022 Mar; 30(6):9360-9379. PubMed ID: 35299366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase transition of light in cavity QED lattices.
    Schiró M; Bordyuh M; Oztop B; Türeci HE
    Phys Rev Lett; 2012 Aug; 109(5):053601. PubMed ID: 23006171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-lived quasistationary coherences in a V-type system driven by incoherent light.
    Tscherbul TV; Brumer P
    Phys Rev Lett; 2014 Sep; 113(11):113601. PubMed ID: 25259976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metasurface-Enabled Remote Quantum Interference.
    Jha PK; Ni X; Wu C; Wang Y; Zhang X
    Phys Rev Lett; 2015 Jul; 115(2):025501. PubMed ID: 26207477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.