These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23992113)

  • 1. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries.
    Becker CR; Strawhecker KE; McAllister QP; Lundgren CA
    ACS Nano; 2013 Oct; 7(10):9173-82. PubMed ID: 23992113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Lithiation Cycle Stability of ALD-Coated Confined a-Si Microstructures Determined Using In Situ AFM.
    Becker CR; Prokes SM; Love CT
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):530-7. PubMed ID: 26672626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries.
    Kim G; Jeong S; Shin JH; Cho J; Lee H
    ACS Nano; 2014 Feb; 8(2):1907-12. PubMed ID: 24446833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ AFM Imaging of Solid Electrolyte Interfaces on HOPG with Ethylene Carbonate and Fluoroethylene Carbonate-Based Electrolytes.
    Shen C; Wang S; Jin Y; Han WQ
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25441-7. PubMed ID: 26502161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.
    Key B; Morcrette M; Tarascon JM; Grey CP
    J Am Chem Soc; 2011 Jan; 133(3):503-12. PubMed ID: 21171582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A beaded-string silicon anode.
    Sun CF; Karki K; Jia Z; Liao H; Zhang Y; Li T; Qi Y; Cumings J; Rubloff GW; Wang Y
    ACS Nano; 2013 Mar; 7(3):2717-24. PubMed ID: 23402623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring Volumetric Changes in Silicon Thin-Film Anodes through In Situ Optical Diffraction Microscopy.
    Duay J; Schroder KW; Murugesan S; Stevenson KJ
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17642-50. PubMed ID: 27311132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.
    Shen C; Ge M; Luo L; Fang X; Liu Y; Zhang A; Rong J; Wang C; Zhou C
    Sci Rep; 2016 Aug; 6():31334. PubMed ID: 27571919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy.
    Yuk JM; Seo HK; Choi JW; Lee JY
    ACS Nano; 2014 Jul; 8(7):7478-85. PubMed ID: 24980889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ atomic force microscopy study of initial solid electrolyte interphase formation on silicon electrodes for Li-ion batteries.
    Tokranov A; Sheldon BW; Li C; Minne S; Xiao X
    ACS Appl Mater Interfaces; 2014 May; 6(9):6672-86. PubMed ID: 24670933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore collapse and regrowth in silicon electrodes for rechargeable batteries.
    DeCaluwe SC; Dhar BM; Huang L; He Y; Yang K; Owejan JP; Zhao Y; Talin AA; Dura JA; Wang H
    Phys Chem Chem Phys; 2015 May; 17(17):11301-12. PubMed ID: 25839065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries.
    Jerliu B; Dörrer L; Hüger E; Borchardt G; Steitz R; Geckle U; Oberst V; Bruns M; Schneider O; Schmidt H
    Phys Chem Chem Phys; 2013 May; 15(20):7777-84. PubMed ID: 23598350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles.
    Liu Y; Hudak NS; Huber DL; Limmer SJ; Sullivan JP; Huang JY
    Nano Lett; 2011 Oct; 11(10):4188-94. PubMed ID: 21875099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy.
    Wei CY; Sun YT; Liu YL; Liu TR; Wen CY
    Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries.
    Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.