These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23992120)

  • 1. Measuring interference of drug-like molecules with the respiratory chain: toward the early identification of mitochondrial uncouplers in lead finding.
    Stock U; Matter H; Diekert K; Dörner W; Dröse S; Licher T
    Assay Drug Dev Technol; 2013 Sep; 11(7):408-22. PubMed ID: 23992120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
    Chaban Y; Boekema EJ; Dudkina NV
    Biochim Biophys Acta; 2014 Apr; 1837(4):418-26. PubMed ID: 24183696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiology of respiratory chain complexes and the ADP-ATP exchanger in native mitochondrial membranes.
    Watzke N; Diekert K; Obrdlik P
    Biochemistry; 2010 Dec; 49(48):10308-18. PubMed ID: 20958090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial electron transport chain, ROS generation and uncoupling (Review).
    Zhao RZ; Jiang S; Zhang L; Yu ZB
    Int J Mol Med; 2019 Jul; 44(1):3-15. PubMed ID: 31115493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ginsenosides Rb1 and Rg1 Protect Primary Cultured Astrocytes against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury via Improving Mitochondrial Function.
    Xu M; Ma Q; Fan C; Chen X; Zhang H; Tang M
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31816825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density.
    Pan Y; Shadel GS
    Aging (Albany NY); 2009 Jan; 1(1):131-45. PubMed ID: 20157595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial disorders of the OXPHOS system.
    Fernandez-Vizarra E; Zeviani M
    FEBS Lett; 2021 Apr; 595(8):1062-1106. PubMed ID: 33159691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects.
    Fernández-Vizarra E; Tiranti V; Zeviani M
    Biochim Biophys Acta; 2009 Jan; 1793(1):200-11. PubMed ID: 18620006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Respiratory Chain Complexes.
    Sousa JS; D'Imprima E; Vonck J
    Subcell Biochem; 2018; 87():167-227. PubMed ID: 29464561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes.
    Dudkina NV; Sunderhaus S; Boekema EJ; Braun HP
    J Bioenerg Biomembr; 2008 Oct; 40(5):419-24. PubMed ID: 18839290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases.
    Cheng J; Nanayakkara G; Shao Y; Cueto R; Wang L; Yang WY; Tian Y; Wang H; Yang X
    Adv Exp Med Biol; 2017; 982():359-370. PubMed ID: 28551798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes.
    Vineetha VP; Soumya RS; Raghu KG
    Eur J Pharmacol; 2015 May; 754():162-72. PubMed ID: 25746422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.
    Trotta AP; Gelles JD; Serasinghe MN; Loi P; Arbiser JL; Chipuk JE
    J Biol Chem; 2017 Jul; 292(28):11727-11739. PubMed ID: 28546431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury.
    Shaik ZP; Fifer EK; Nowak G
    Am J Physiol Renal Physiol; 2008 Feb; 294(2):F423-32. PubMed ID: 18077599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction.
    Stanyer L; Jorgensen W; Hori O; Clark JB; Heales SJ
    Neurochem Int; 2008 Sep; 53(3-4):95-101. PubMed ID: 18598728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular biogenesis of mitochondrial respiratory complexes.
    Barros MH; McStay GP
    Mitochondrion; 2020 Jan; 50():94-114. PubMed ID: 31669617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production.
    Hosseini MJ; Shaki F; Ghazi-Khansari M; Pourahmad J
    Cell Biochem Biophys; 2014 Sep; 70(1):367-81. PubMed ID: 24691927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation and functional role of the electron transport chain supercomplexes.
    Cogliati S; Cabrera-Alarcón JL; Enriquez JA
    Biochem Soc Trans; 2021 Dec; 49(6):2655-2668. PubMed ID: 34747989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.