BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23992561)

  • 1. Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis.
    Fonseca BG; Puentes JG; Mateo S; Sánchez S; Moya AJ; Roberto IC
    J Agric Food Chem; 2013 Oct; 61(40):9658-65. PubMed ID: 23992561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate.
    Silva JP; Mussatto SI; Roberto IC
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.
    Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV
    Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.
    Canilha L; Carvalho W; Felipe Md; Silva JB; Giulietti M
    Appl Biochem Biotechnol; 2010 May; 161(1-8):84-92. PubMed ID: 19802721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.
    Li Y; Park JY; Shiroma R; Tokuyasu K
    J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis.
    Lin TH; Huang CF; Guo GL; Hwang WS; Huang SL
    Bioresour Technol; 2012 Jul; 116():314-9. PubMed ID: 22537402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis.
    Huang CF; Lin TH; Guo GL; Hwang WS
    Bioresour Technol; 2009 Sep; 100(17):3914-20. PubMed ID: 19349164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae-VS₃.
    Chandel AK; Singh OV; Narasu ML; Rao LV
    N Biotechnol; 2011 Oct; 28(6):593-9. PubMed ID: 21185411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of agitation rate on ethanol production from sugar maple hemicellulosic hydrolysate by Pichia stipitis.
    Shupe AM; Liu S
    Appl Biochem Biotechnol; 2012 Sep; 168(1):29-36. PubMed ID: 21603950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.
    Arslan Y; Eken-Saraçoğlu N
    Bioresour Technol; 2010 Nov; 101(22):8664-70. PubMed ID: 20599381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis.
    Nigam JN
    J Biotechnol; 2001 Apr; 87(1):17-27. PubMed ID: 11267696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis.
    Bellido C; Bolado S; Coca M; Lucas S; González-Benito G; García-Cubero MT
    Bioresour Technol; 2011 Dec; 102(23):10868-74. PubMed ID: 21983414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of aeration on bioethanol production from ozonized wheat straw hydrolysates using Pichia stipitis.
    Bellido C; González-Benito G; Coca M; Lucas S; García-Cubero MT
    Bioresour Technol; 2013 Apr; 133():51-8. PubMed ID: 23422301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis.
    Kumar A; Singh LK; Ghosh S
    Bioresour Technol; 2009 Jul; 100(13):3293-7. PubMed ID: 19297151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.
    Gupta R; Sharma KK; Kuhad RC
    Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments.
    Suriyachai N; Weerasaia K; Laosiripojana N; Champreda V; Unrean P
    Bioresour Technol; 2013 Aug; 142():171-8. PubMed ID: 23735799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater.
    Gonçalves FA; dos Santos ES; de Macedo GR
    J Basic Microbiol; 2015 Jun; 55(6):695-708. PubMed ID: 25760943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose.
    Kordowska-Wiater M; Targoński Z
    Acta Microbiol Pol; 2001; 50(3-4):291-9. PubMed ID: 11930997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes.
    Germec M; Kartal FK; Bilgic M; Ilgin M; Ilhan E; Güldali H; Isci A; Turhan I
    Biotechnol Prog; 2016 Jul; 32(4):872-82. PubMed ID: 27071671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.