These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23992670)

  • 1. Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System.
    Jones M; Varella-Garcia M; Skokan M; Bryce S; Schowinsky J; Peters R; Vang B; Brecheisen M; Startz T; Frank N; Nankervis B
    Cytotherapy; 2013 Nov; 15(11):1323-39. PubMed ID: 23992670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells.
    Mennan C; Garcia J; Roberts S; Hulme C; Wright K
    Stem Cell Res Ther; 2019 Mar; 10(1):99. PubMed ID: 30885254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction.
    Blázquez-Prunera A; Díez JM; Gajardo R; Grancha S
    Stem Cell Res Ther; 2017 Apr; 8(1):103. PubMed ID: 28449711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSV-1 amplicon viral vector-mediated gene transfer to human bone marrow-derived mesenchymal stem cells.
    Ho IA; Chan KY; Miao L; Shim WS; Guo CM; Cheang P; Hui KM; Lam PY
    Cancer Gene Ther; 2008 Sep; 15(9):553-62. PubMed ID: 18535622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale Automated Hollow-Fiber Bioreactor Expansion of Umbilical Cord-Derived Human Mesenchymal Stromal Cells for Neurological Disorders.
    Vymetalova L; Kucirkova T; Knopfova L; Pospisilova V; Kasko T; Lejdarova H; Makaturova E; Kuglik P; Oralova V; Matalova E; Benes P; Koristek Z; Forostyak S
    Neurochem Res; 2020 Jan; 45(1):204-214. PubMed ID: 31828497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production via good manufacturing practice of exofucosylated human mesenchymal stromal cells for clinical applications.
    López-Lucas MD; Pachón-Peña G; García-Hernández AM; Parrado A; Sánchez-Salinas D; García-Bernal D; Algueró MDC; Martinez FI; Blanquer M; Cabañas-Perianes V; Molina-Molina M; Asín-Aguilar C; Moraleda JM; Sackstein R
    Cytotherapy; 2018 Sep; 20(9):1110-1123. PubMed ID: 30170815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer.
    Böcker W; Yin Z; Drosse I; Haasters F; Rossmann O; Wierer M; Popov C; Locher M; Mutschler W; Docheva D; Schieker M
    J Cell Mol Med; 2008 Aug; 12(4):1347-59. PubMed ID: 18318690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the use of a pharmaceutical grade xeno-free medium for in vitro expansion of human mesenchymal stem/stromal cells.
    Cimino M; Gonçalves RM; Bauman E; Barroso-Vilares M; Logarinho E; Barrias CC; Martins MCL
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1785-e1795. PubMed ID: 29024519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: evidence of resistance to apoptosis induction.
    Mueller LP; Luetzkendorf J; Mueller T; Reichelt K; Simon H; Schmoll HJ
    Stem Cells; 2006 Dec; 24(12):2753-65. PubMed ID: 16931776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal variability of human mesenchymal stem cells cultured under hypoxic conditions.
    Ueyama H; Horibe T; Hinotsu S; Tanaka T; Inoue T; Urushihara H; Kitagawa A; Kawakami K
    J Cell Mol Med; 2012 Jan; 16(1):72-82. PubMed ID: 21418515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production.
    Heathman TR; Stolzing A; Fabian C; Rafiq QA; Coopman K; Nienow AW; Kara B; Hewitt CJ
    Cytotherapy; 2015 Nov; 17(11):1524-35. PubMed ID: 26432558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neoplastic transformation by TERT in FGF-2-expanded human mesenchymal stem cells.
    Yamaoka E; Hiyama E; Sotomaru Y; Onitake Y; Fukuba I; Sudo T; Sueda T; Hiyama K
    Int J Oncol; 2011 Jul; 39(1):5-11. PubMed ID: 21573488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of cellular properties and differentiation mutilpotential of human mesenchymal stem cells transduced with hTERT gene in a long-term culture.
    Huang G; Zheng Q; Sun J; Guo C; Yang J; Chen R; Xu Y; Wang G; Shen D; Pan Z; Jin J; Wang J
    J Cell Biochem; 2008 Mar; 103(4):1256-69. PubMed ID: 18027880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and cost-benefit analysis of automated bioreactor-expanded mesenchymal stem cells for clinical applications.
    Russell AL; Lefavor RC; Zubair AC
    Transfusion; 2018 Oct; 58(10):2374-2382. PubMed ID: 30203447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Donor Variability in Growth Kinetics of Healthy hMSCs Using Manual Processing: Considerations for Manufacture of Cell Therapies.
    Detela G; Bain OW; Kim HW; Williams DJ; Mason C; Mathur A; Wall IB
    Biotechnol J; 2018 Feb; 13(2):. PubMed ID: 29334181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions.
    Hervy M; Weber JL; Pecheul M; Dolley-Sonneville P; Henry D; Zhou Y; Melkoumian Z
    PLoS One; 2014; 9(3):e92120. PubMed ID: 24638103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of genetic stability of human bone marrow multipotent mesenchymal stromal cells.
    Nikitina VA; Osipova EY; Katosova LD; Rumyantsev SA; Skorobogatova EV; Shamanskaya TV; Bochkov NP
    Bull Exp Biol Med; 2011 Mar; 150(5):627-31. PubMed ID: 22235401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of donor characteristics, technique of harvesting and in vitro processing on culturing of human marrow stroma cells for tissue engineered growth of bone.
    Bertram H; Mayer H; Schliephake H
    Clin Oral Implants Res; 2005 Oct; 16(5):524-31. PubMed ID: 16164457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative study of tissue-engineered cartilage with human bone marrow mesenchymal stem cells.
    Pang Y; Cui P; Chen W; Gao P; Zhang H
    Arch Facial Plast Surg; 2005; 7(1):7-11. PubMed ID: 15655167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture.
    Pleumeekers MM; Nimeskern L; Koevoet JLM; Karperien M; Stok KS; van Osch GJVM
    PLoS One; 2018; 13(2):e0190744. PubMed ID: 29489829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.