BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23993286)

  • 1. Life cycle assessment of ethanol derived from sawdust.
    Roy P; Dutta A
    Bioresour Technol; 2013 Dec; 150():407-11. PubMed ID: 23993286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process.
    Roy P; Dutta A; Deen B
    Bioresour Technol; 2015 Sep; 192():185-91. PubMed ID: 26038322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the life cycle of bioethanol produced from rice straws.
    Roy P; Orikasa T; Tokuyasu K; Nakamura N; Shiina T
    Bioresour Technol; 2012 Apr; 110():239-44. PubMed ID: 22342582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction.
    Liu X; Saydah B; Eranki P; Colosi LM; Greg Mitchell B; Rhodes J; Clarens AF
    Bioresour Technol; 2013 Nov; 148():163-71. PubMed ID: 24045203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emissions savings in the corn-ethanol life cycle from feeding coproducts to livestock.
    Bremer VR; Liska AJ; Klopfenstein TJ; Erickson GE; Yang HS; Walters DT; Cassman KG
    J Environ Qual; 2010; 39(2):472-82. PubMed ID: 20176820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs.
    Weinberg J; Kaltschmitt M
    Bioresour Technol; 2013 Dec; 150():420-8. PubMed ID: 24012134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.
    Strogen B; Horvath A; Zilberman D
    Bioresour Technol; 2013 Dec; 150():476-85. PubMed ID: 24119498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.
    Koga N; Tajima R
    J Environ Manage; 2011 Mar; 92(3):967-73. PubMed ID: 21126818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
    Rehl T; Müller J
    J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.
    Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD
    Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biorefinery from Nannochloropsis sp. microalga - energy and CO2 emission and economic analyses.
    Ferreira AF; Ribeiro LA; Batista AP; Marques PA; Nobre BP; Palavra AM; da Silva PP; Gouveia L; Silva C
    Bioresour Technol; 2013 Jun; 138():235-44. PubMed ID: 23619136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy consumption and greenhouse gas emissions from enzyme and yeast manufacture for corn and cellulosic ethanol production.
    Dunn JB; Mueller S; Wang M; Han J
    Biotechnol Lett; 2012 Dec; 34(12):2259-63. PubMed ID: 23086569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.
    Ravi S; Lobell DB; Field CB
    Environ Sci Technol; 2014; 48(5):3021-30. PubMed ID: 24467248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India.
    Kumar S; Singh J; Nanoti SM; Garg MO
    Bioresour Technol; 2012 Apr; 110():723-9. PubMed ID: 22361070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: bioethanol production, recycling and incineration with energy recovery.
    Wang L; Templer R; Murphy RJ
    Bioresour Technol; 2012 Sep; 120():89-98. PubMed ID: 22784958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach.
    Quintero JA; Moncada J; Cardona CA
    Bioresour Technol; 2013 Jul; 139():300-7. PubMed ID: 23665691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.
    Ferreira AF; Ortigueira J; Alves L; Gouveia L; Moura P; Silva C
    Bioresour Technol; 2013 Sep; 144():156-64. PubMed ID: 23867534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.