These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 23993288)

  • 1. Enhancing charge harvest from microbial fuel cells by controlling the charging and discharging frequency of capacitors.
    Ren S; Xia X; Yuan L; Liang P; Huang X
    Bioresour Technol; 2013 Oct; 146():812-815. PubMed ID: 23993288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems.
    Liang P; Wu W; Wei J; Yuan L; Xia X; Huang X
    Environ Sci Technol; 2011 Aug; 45(15):6647-53. PubMed ID: 21710972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation.
    Wang Y; Wen Q; Chen Y; Yin J; Duan T
    Appl Biochem Biotechnol; 2016 Dec; 180(7):1372-1385. PubMed ID: 27557903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.
    Tee PF; Abdullah MO; Tan IAW; Amin MAM; Nolasco-Hipolito C; Bujang K
    Environ Technol; 2018 Apr; 39(8):1081-1088. PubMed ID: 28417676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced performance of bio-cathode microbial fuel cells with the applying of transient-state operation modes.
    Liang P; Yuan L; Wu W; Yang X; Huang X
    Bioresour Technol; 2013 Nov; 147():228-233. PubMed ID: 23994964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capacitive bioanodes enable renewable energy storage in microbial fuel cells.
    Deeke A; Sleutels TH; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2012 Mar; 46(6):3554-60. PubMed ID: 22332918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of anodic biofilm and the performance of microbial fuel cells to different discharging current densities.
    Li J; Li H; Zheng J; Zhang L; Fu Q; Zhu X; Liao Q
    Bioresour Technol; 2017 Jun; 233():1-6. PubMed ID: 28258990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active energy harvesting from microbial fuel cells at the maximum power point without using resistors.
    Wang H; Park JD; Ren Z
    Environ Sci Technol; 2012 May; 46(9):5247-52. PubMed ID: 22486712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation from food wastes and microbial community structure in microbial fuel cells.
    Jia J; Tang Y; Liu B; Wu D; Ren N; Xing D
    Bioresour Technol; 2013 Sep; 144():94-9. PubMed ID: 23859985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.
    Kalathil S; Lee J; Cho MH
    ChemSusChem; 2013 Feb; 6(2):246-50. PubMed ID: 23239601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material.
    Özkaya B; Cetinkaya AY; Cakmakci M; Karadağ D; Sahinkaya E
    Bioprocess Biosyst Eng; 2013 Apr; 36(4):399-405. PubMed ID: 22903571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell.
    Rashid N; Cui YF; Saif Ur Rehman M; Han JI
    Sci Total Environ; 2013 Jul; 456-457():91-4. PubMed ID: 23584037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.
    Behera M; Ghangrekar MM
    Water Sci Technol; 2011; 64(12):2468-73. PubMed ID: 22170843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent energy harvesting improves the performance of microbial fuel cells.
    Dewan A; Beyenal H; Lewandowski Z
    Environ Sci Technol; 2009 Jun; 43(12):4600-5. PubMed ID: 19603683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.
    Zhang L; Zhu X; Kashima H; Li J; Ye DD; Liao Q; Regan JM
    Bioresour Technol; 2015 Mar; 179():26-34. PubMed ID: 25514399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ utilizing the produced electricity to regulate substrate conversion in denitrifying sulfide removal microbial fuel cells.
    Liu Y; Wang K; Zhang S
    Bioresour Technol; 2021 Feb; 322():124535. PubMed ID: 33340952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes.
    Aelterman P; Versichele M; Marzorati M; Boon N; Verstraete W
    Bioresour Technol; 2008 Dec; 99(18):8895-902. PubMed ID: 18524577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Composition and measurement of the apparent internal resistance in microbial fuel cell].
    Liang P; Fan MZ; Cao XX; Huang X; Wang C
    Huan Jing Ke Xue; 2007 Aug; 28(8):1894-8. PubMed ID: 17926430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.