These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 23993389)
1. Seagrass tolerance to herbivory under increased ocean temperatures. Garthwin RG; Poore AG; Vergés A Mar Pollut Bull; 2014 Jun; 83(2):475-82. PubMed ID: 23993389 [TBL] [Abstract][Full Text] [Related]
2. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549 [TBL] [Abstract][Full Text] [Related]
3. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses. Collier CJ; Langlois L; Ow Y; Johansson C; Giammusso M; Adams MP; O'Brien KR; Uthicke S New Phytol; 2018 Aug; 219(3):1005-1017. PubMed ID: 29855044 [TBL] [Abstract][Full Text] [Related]
4. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Koweek DA; Zimmerman RC; Hewett KM; Gaylord B; Giddings SN; Nickols KJ; Ruesink JL; Stachowicz JJ; Takeshita Y; Caldeira K Ecol Appl; 2018 Oct; 28(7):1694-1714. PubMed ID: 30063809 [TBL] [Abstract][Full Text] [Related]
5. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. York PH; Gruber RK; Hill R; Ralph PJ; Booth DJ; Macreadie PI PLoS One; 2013; 8(10):e76377. PubMed ID: 24124551 [TBL] [Abstract][Full Text] [Related]
6. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species. Collier CJ; Ow YX; Langlois L; Uthicke S; Johansson CL; O'Brien KR; Hrebien V; Adams MP Front Plant Sci; 2017; 8():1446. PubMed ID: 28878790 [TBL] [Abstract][Full Text] [Related]
7. Driving factors of biogeographical variation in seagrass herbivory. Martínez-Crego B; Prado P; Marco-Méndez C; Fernández-Torquemada Y; Espino F; Sánchez-Lizaso JL; de la Ossa JA; Vilella DM; Machado M; Tuya F Sci Total Environ; 2021 Mar; 758():143756. PubMed ID: 33333301 [TBL] [Abstract][Full Text] [Related]
8. Contrasting effects of ocean warming on different components of plant-herbivore interactions. Pagès JF; Smith TM; Tomas F; Sanmartí N; Boada J; De Bari H; Pérez M; Romero J; Arthur R; Alcoverro T Mar Pollut Bull; 2018 Sep; 134():55-65. PubMed ID: 29074253 [TBL] [Abstract][Full Text] [Related]
9. Seagrass meadows in a globally changing environment. Unsworth RK; van Keulen M; Coles RG Mar Pollut Bull; 2014 Jun; 83(2):383-6. PubMed ID: 24874505 [TBL] [Abstract][Full Text] [Related]
10. Response of a Habitat-Forming Marine Plant to a Simulated Warming Event Is Delayed, Genotype Specific, and Varies with Phenology. Reynolds LK; DuBois K; Abbott JM; Williams SL; Stachowicz JJ PLoS One; 2016; 11(6):e0154532. PubMed ID: 27258011 [TBL] [Abstract][Full Text] [Related]
11. Suppressing antagonistic bioengineering feedbacks doubles restoration success. Suykerbuyk W; Bouma TJ; van der Heide T; Faust C; Govers LL; Giesen WB; de Jong DJ; van Katwijk MM Ecol Appl; 2012 Jun; 22(4):1224-31. PubMed ID: 22827130 [TBL] [Abstract][Full Text] [Related]
12. Interaction of short-term copper pollution and ocean acidification in seagrass ecosystems: Toxicity, bioconcentration and dietary transfer. de Los Santos CB; Arenas F; Neuparth T; Santos MM Mar Pollut Bull; 2019 May; 142():155-163. PubMed ID: 31232289 [TBL] [Abstract][Full Text] [Related]
13. Warming intensifies the interaction between the temperate seagrass Posidonia oceanica and its dominant fish herbivore Sarpa salpa. Buñuel X; Alcoverro T; Romero J; Arthur R; Ruiz JM; Pérez M; Ontoria Y; Raventós N; Macpherson E; Torrado H; Pagès JF Mar Environ Res; 2021 Mar; 165():105237. PubMed ID: 33476979 [TBL] [Abstract][Full Text] [Related]
14. The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri). Lee H; Golicz AA; Bayer PE; Jiao Y; Tang H; Paterson AH; Sablok G; Krishnaraj RR; Chan CK; Batley J; Kendrick GA; Larkum AW; Ralph PJ; Edwards D Plant Physiol; 2016 Sep; 172(1):272-83. PubMed ID: 27373688 [TBL] [Abstract][Full Text] [Related]
15. Salinity stress drives herbivory rates and selective grazing in subtidal seagrass communities. Bell SY; Fraser MW; Statton J; Kendrick GA PLoS One; 2019; 14(3):e0214308. PubMed ID: 30897150 [TBL] [Abstract][Full Text] [Related]
16. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495 [TBL] [Abstract][Full Text] [Related]
17. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Bergmann N; Winters G; Rauch G; Eizaguirre C; Gu J; Nelle P; Fricke B; Reusch TB Mol Ecol; 2010 Jul; 19(14):2870-83. PubMed ID: 20609077 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. Golicz AA; Schliep M; Lee HT; Larkum AW; Dolferus R; Batley J; Chan CK; Sablok G; Ralph PJ; Edwards D J Exp Bot; 2015 Mar; 66(5):1489-98. PubMed ID: 25563969 [TBL] [Abstract][Full Text] [Related]
19. Vegetative fragment production as a means of propagule dispersal for tropical seagrass meadows. Tol SJ; Carter AB; York PH; Jarvis JC; Grech A; Congdon BC; Coles RG Mar Environ Res; 2023 Oct; 191():106160. PubMed ID: 37678099 [TBL] [Abstract][Full Text] [Related]
20. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Sweatman JL; Layman CA; Fourqurean JW Mar Environ Res; 2017 May; 126():95-108. PubMed ID: 28259103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]