BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23993491)

  • 1. Extraction and characterisation of protein fractions from five insect species.
    Yi L; Lakemond CM; Sagis LM; Eisner-Schadler V; van Huis A; van Boekel MA
    Food Chem; 2013 Dec; 141(4):3341-8. PubMed ID: 23993491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens.
    Janssen RH; Vincken JP; van den Broek LA; Fogliano V; Lakemond CM
    J Agric Food Chem; 2017 Mar; 65(11):2275-2278. PubMed ID: 28252948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors.
    Perez-Santaescolastica C; de Pril I; van de Voorde I; Fraeye I
    Foods; 2023 Nov; 12(22):. PubMed ID: 38002148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purine derivate content and amino acid profile in larval stages of three edible insects.
    Bednářová M; Borkovcová M; Komprda T
    J Sci Food Agric; 2014 Jan; 94(1):71-6. PubMed ID: 23633284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracts from the edible insects Acheta domesticus and Tenebrio molitor with improved fatty acid profile due to ultrasound assisted or pressurized liquid extraction.
    Otero P; Gutierrez-Docio A; Navarro Del Hierro J; Reglero G; Martin D
    Food Chem; 2020 Jun; 314():126200. PubMed ID: 31972408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates.
    Hall FG; Jones OG; O'Haire ME; Liceaga AM
    Food Chem; 2017 Jun; 224():414-422. PubMed ID: 28159288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization, antioxidant activity, and inhibitory effect on pancreatic lipase of extracts from the edible insects Acheta domesticus and Tenebrio molitor.
    Navarro Del Hierro J; Gutiérrez-Docio A; Otero P; Reglero G; Martin D
    Food Chem; 2020 Mar; 309():125742. PubMed ID: 31704068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Satiety of Edible Insect-Based Food Products as a Component of Body Weight Control.
    Skotnicka M; Mazurek A; Karwowska K; Folwarski M
    Nutrients; 2022 May; 14(10):. PubMed ID: 35631288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra.
    Adámková A; Mlček J; Kouřimská L; Borkovcová M; Bušina T; Adámek M; Bednářová M; Krajsa J
    Int J Environ Res Public Health; 2017 May; 14(5):. PubMed ID: 28498340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionality of Cricket and Mealworm Hydrolysates Generated after Pretreatment of Meals with High Hydrostatic Pressures.
    Dion-Poulin A; Laroche M; Doyen A; Turgeon SL
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33212841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the aromatic profile of seven unheated edible insect species.
    Perez-Santaescolastica C; De Winne A; Devaere J; Fraeye I
    Food Res Int; 2023 Feb; 164():112389. PubMed ID: 36737974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of temperature on structure formation in three insect batters.
    Scholliers J; Steen L; Glorieux S; Van de Walle D; Dewettinck K; Fraeye I
    Food Res Int; 2019 Aug; 122():411-418. PubMed ID: 31229095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspects of cuticular sclerotization in the locust, Scistocerca gregaria, and the beetle, Tenebrio molitor.
    Andersen SO; Roepstorff P
    Insect Biochem Mol Biol; 2007 Mar; 37(3):223-34. PubMed ID: 17296497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the chemical composition of alternative invertebrate prey.
    Oonincx DG; Dierenfeld ES
    Zoo Biol; 2012; 31(1):40-54. PubMed ID: 21442652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Conventional and Sustainable Lipid Extraction Methods for the Production of Oil and Protein Isolate from Edible Insect Meal.
    Laroche M; Perreault V; Marciniak A; Gravel A; Chamberland J; Doyen A
    Foods; 2019 Nov; 8(11):. PubMed ID: 31766306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperactive antifreeze proteins from longhorn beetles: some structural insights.
    Kristiansen E; Wilkens C; Vincents B; Friis D; Lorentzen AB; Jenssen H; Løbner-Olesen A; Ramløv H
    J Insect Physiol; 2012 Nov; 58(11):1502-10. PubMed ID: 23000739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties.
    Zhao X; Vázquez-Gutiérrez JL; Johansson DP; Landberg R; Langton M
    PLoS One; 2016; 11(2):e0147791. PubMed ID: 26840533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of salting-in/out-assisted extractions on structural, physicochemical and functional properties of Tenebrio molitor larvae protein isolates.
    Jiang Y; Zhu Y; Zheng Y; Liu Z; Zhong Y; Deng Y; Zhao Y
    Food Chem; 2021 Feb; 338():128158. PubMed ID: 33091981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micellar casein gelation at high sucrose content.
    Schorsch C; Jones MG; Norton IT
    J Dairy Sci; 2002 Dec; 85(12):3155-63. PubMed ID: 12512588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dietary urea supplementation on performance of selected insect species.
    Hetényi N; Bersényi A; Hullár I
    Acta Vet Hung; 2024 Apr; 72(1):24-32. PubMed ID: 38578702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.