These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 239936)

  • 1. The pH jump study of enzyme proteins. I. Liquefying alpha-amylase from Bacillus subtilis.
    Hiromi K; Onishi M; Kanaya K; Matsumoto T
    J Biochem; 1975 May; 77(5):957-63. PubMed ID: 239936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the subsite structure of amylases. II. Difference-spectrophotometric studies on the interaction of maltotriose with liquefying alpha-amylase from Bacillus subtilis.
    Ohnishi M; Kegai H; Hiromi K
    J Biochem; 1975 Aug; 78(2):247-51. PubMed ID: 819426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of tyrosine residue of bacterial liquefying alpha-amylase in the enzymatic hydrolysis of linear substrates as studied by chemical modification with acetic anhydride.
    Onishi M; Suganuma T; Hiromi K
    J Biochem; 1974 Jul; 76(1):7-13. PubMed ID: 4215804
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantitative determination of anomeric forms of sugar produced by amylases. V. Anomeric forms of maltose produced in the hydrolytic reaction of substituted phenyl alpha-maltosides catalyzed by saccharifying alpha-amylase from B. subtilis.
    Shibaoka T; Ishikura K; Hiromi K; Watanabe T
    J Biochem; 1975 Jun; 77(6):1215-22. PubMed ID: 5401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the optical rotation stopped-flow method to kinetic studies of rapid conformational changes of proteins. pH-jump of Taka-amylase A.
    Hiromi K; Onishi M; Hama Y
    J Biochem; 1974 Feb; 75(2):433-5. PubMed ID: 4837451
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.
    Nwokoro O; Anthonia O
    Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of pH and urea on the conformational properties of subtilisin DY.
    Ricchelli F; Jori G; Filippi B; Boteva R; Shopova M; Genov N
    Biochem J; 1982 Nov; 207(2):201-5. PubMed ID: 6818946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of pH on the conformation properties and enzyme activity of alpha-amylase from Aspergillus terricola].
    Varnavskaia OV; Illarionova NG; Selezneva AA; Samsonov GV
    Prikl Biokhim Mikrobiol; 1978; 14(6):866-70. PubMed ID: 34837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide.
    Fujimori H; Ohnishi M; Hiromi K
    J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsite affinities of bacterial liquefying alpha-amylase evaluated from the rate parameters of linear substrates.
    Iwasa S; Aoshima H; Hiromi K; Hatano H
    J Biochem; 1974 May; 75(5):969-78. PubMed ID: 4213409
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of photooxidation of bacterial liquefying alpha-amylase dependent on the degree of polymerization of linear substrates.
    Aoshima H; Manabe T; Hiromi K; Hatano H
    Biochim Biophys Acta; 1974 Apr; 341(2):497-504. PubMed ID: 4209049
    [No Abstract]   [Full Text] [Related]  

  • 12. Substrate concentration dependence of the rate of maltose hydrolysis by saccharifying alpha-amylase from B. subtilis.
    Shibaoka T; Inatani T; Hiromi K; Watanabe T
    J Biochem; 1975 May; 77(5):965-8. PubMed ID: 808539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the pH-jump method to the titration of tyrosine residues in bovine alpha-lactalbumin.
    Kuwajima K; Ogawa Y; Sugai S
    Biochemistry; 1979 Mar; 18(5):878-82. PubMed ID: 33704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Alpha-amylases of Bacillus subtilis].
    Varbanets' LD; Myshak KV; Matseliukh OV; Hudzenko OV; Safronova LA; Prykhod'ko VO
    Mikrobiol Z; 2006; 68(2):30-8. PubMed ID: 16786626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133.
    Takenaka S; Miyatake A; Tanaka K; Kuntiya A; Techapun C; Leksawasdi N; Seesuriyachan P; Chaiyaso T; Watanabe M; Yoshida K
    J Basic Microbiol; 2015 Jun; 55(6):780-9. PubMed ID: 25689045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of phenyl beta-maltoside catalyzed by saccharifying alpha-amylase from Bacillus subtilis.
    Ishikura K; Nitta Y; Watanabe T
    J Biochem; 1977 May; 81(5):1187-92. PubMed ID: 408329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The action of Bacillus subtilis liquefying amylase on 6-deoxy-6-iodoamylose.
    Weill CE; Guerrera J
    Carbohydr Res; 1973 Apr; 27(2):451-4. PubMed ID: 4198923
    [No Abstract]   [Full Text] [Related]  

  • 18. New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization.
    Gashtasbi F; Ahmadian G; Noghabi KA
    Enzyme Microb Technol; 2014 Oct; 64-65():17-23. PubMed ID: 25152412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical modification of liquefying alpha-amylase: role of tyrosine residues at its active center.
    Kochhar S; Dua RD
    Arch Biochem Biophys; 1985 Aug; 240(2):757-67. PubMed ID: 3875315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligase-independent cloning of amylase gene from a local Bacillus subtilis isolate and biochemical characterization of the purified enzyme.
    Tuzlakoglu Ozturk M; Akbulut N; Issever Ozturk S; Gumusel F
    Appl Biochem Biotechnol; 2013 Sep; 171(2):263-78. PubMed ID: 23832859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.