These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 23993621)

  • 1. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Loos K
    Food Chem; 2013 Dec; 141(4):4318-23. PubMed ID: 23993621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase.
    Ahmadi-Abhari S; Woortman AJ; Oudhuis AA; Hamer RJ; Loos K
    Carbohydr Polym; 2013 Sep; 97(2):436-40. PubMed ID: 23911468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Loos K
    Carbohydr Polym; 2015 May; 122():197-201. PubMed ID: 25817659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of lysophosphatidylcholine on the gelation of diluted wheat starch suspensions.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Oudhuis AA; Loos K
    Carbohydr Polym; 2013 Mar; 93(1):224-31. PubMed ID: 23465923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch granular protein of high-amylose wheat gives innate resistance to amylolysis.
    Li HT; Sartika RS; Kerr ED; Schulz BL; Gidley MJ; Dhital S
    Food Chem; 2020 Nov; 330():127328. PubMed ID: 32569940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starch digestion mechanistic information from the time evolution of molecular size distributions.
    Witt T; Gidley MJ; Gilbert RG
    J Agric Food Chem; 2010 Jul; 58(14):8444-52. PubMed ID: 20572670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.
    Shrestha AK; Blazek J; Flanagan BM; Dhital S; Larroque O; Morell MK; Gilbert EP; Gidley MJ
    Carbohydr Polym; 2012 Sep; 90(1):23-33. PubMed ID: 24751006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains.
    Syahariza ZA; Sar S; Hasjim J; Tizzotti MJ; Gilbert RG
    Food Chem; 2013 Jan; 136(2):742-9. PubMed ID: 23122122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of internal structure of maize starch without amylose and amylopectin separation.
    Zhu F; Bertoft E; Seetharaman K
    Carbohydr Polym; 2013 Sep; 97(2):475-81. PubMed ID: 23911473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved methods for the structural analysis of the amylose-rich fraction from rice flour.
    Ward RM; Gao Q; de Bruyn H; Gilbert RG; Fitzgerald MA
    Biomacromolecules; 2006 Mar; 7(3):866-76. PubMed ID: 16529425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In depth study of a new highly efficient raw starch hydrolyzing α-amylase from Rhizomucor sp.
    Tawil G; Viksø-Nielsen A; Rolland-Sabaté A; Colonna P; Buléon A
    Biomacromolecules; 2011 Jan; 12(1):34-42. PubMed ID: 21158480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion.
    Li H; Gilbert RG; Gidley MJ
    Food Chem; 2021 Nov; 362():130188. PubMed ID: 34090046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content.
    Brewer LR; Cai L; Shi YC
    J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of molecular structure on the susceptibility of starch to α-amylase.
    Villas-Boas F; Yamauti Y; Moretti MMS; Franco CML
    Carbohydr Res; 2019 Jun; 479():23-30. PubMed ID: 31102972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The analysis of digestion of starches from wheat with the different amylose content in in vitro conditions].
    Sotnikova EV; Gapparov MM; Zhushman AI
    Vopr Pitan; 2003; 72(3):24-5. PubMed ID: 12872658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-starch matrix plays a key role in enzymic digestion of high-amylose wheat noodle.
    Li HT; Li Z; Fox GP; Gidley MJ; Dhital S
    Food Chem; 2021 Jan; 336():127719. PubMed ID: 32768911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles.
    Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ
    Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch.
    Zhu F; Wang YJ
    Food Chem; 2013 May; 138(1):256-62. PubMed ID: 23265485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.
    Zhang B; Dhital S; Flanagan BM; Luckman P; Halley PJ; Gidley MJ
    Carbohydr Polym; 2015 Dec; 134():485-96. PubMed ID: 26428150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation.
    Crowe TC; Seligman SA; Copeland L
    J Nutr; 2000 Aug; 130(8):2006-8. PubMed ID: 10917916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.