These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23993945)

  • 1. Nanostructure of carious tooth enamel lesion.
    Deyhle H; White SN; Bunk O; Beckmann F; Müller B
    Acta Biomater; 2014 Jan; 10(1):355-64. PubMed ID: 23993945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ monitoring and analysis of enamel demineralisation using synchrotron X-ray scattering.
    Sui T; Salvati E; Harper RA; Zhang H; Shelton RM; Landini G; Korsunsky AM
    Acta Biomater; 2018 Sep; 77():333-341. PubMed ID: 30026103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the morphology and activity of the occlusal carious lesion related to the lesion progression stage?
    Neves AA; Vargas DOA; Santos TMP; Lopes RT; Sousa FB
    Arch Oral Biol; 2016 Dec; 72():33-38. PubMed ID: 27529305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructure of healthy and caries-affected human teeth.
    Deyhle H; Bunk O; Müller B
    Nanomedicine; 2011 Dec; 7(6):694-701. PubMed ID: 21945898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histologic and radiographic assessment of caries-like lesions localized at the crown margin.
    Zoellner A; Diemer B; Weber HP; Stassinakis A; Gaengler P
    J Prosthet Dent; 2002 Jul; 88(1):54-9. PubMed ID: 12239481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Knoop and Vickers surface microhardness and transverse microradiography for the study of early caries lesion formation in human and bovine enamel.
    Lippert F; Lynch RJ
    Arch Oral Biol; 2014 Jul; 59(7):704-10. PubMed ID: 24798979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide.
    Kind L; Stevanovic S; Wuttig S; Wimberger S; Hofer J; Müller B; Pieles U
    J Dent Res; 2017 Jul; 96(7):790-797. PubMed ID: 28346861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning X-ray microradiography of a section of a carious lesion in dental enamel.
    Elliott JC; Dowker SE; Knight RD
    J Microsc; 1981 Jul; 123(Pt 1):89-92. PubMed ID: 7265187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital enhancement of radiographs for assessment of interproximal dental caries.
    Seneadza V; Koob A; Kaltschmitt J; Staehle HJ; Duwenhoegger J; Eickholz P
    Dentomaxillofac Radiol; 2008 Mar; 37(3):142-8. PubMed ID: 18316505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An X-ray microtomographic study of natural white-spot enamel lesions.
    Cochrane NJ; Anderson P; Davis GR; Adams GG; Stacey MA; Reynolds EC
    J Dent Res; 2012 Feb; 91(2):185-91. PubMed ID: 22095069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro.
    Nakagawa H; Sadr A; Shimada Y; Tagami J; Sumi Y
    J Dent; 2013 Jan; 41(1):80-9. PubMed ID: 23084870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction.
    Simmons LM; Montgomery J; Beaumont J; Davis GR; Al-Jawad M
    Arch Oral Biol; 2013 Nov; 58(11):1726-34. PubMed ID: 24112740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the distribution and orientation of remineralized enamel crystallites in subsurface lesions by X-ray diffraction.
    Tanaka T; Yagi N; Ohta T; Matsuo Y; Terada H; Kamasaka K; To-o K; Kometani T; Kuriki T
    Caries Res; 2010; 44(3):253-9. PubMed ID: 20516685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of enamel crystallites in subsurface lesion by microbeam X-ray diffraction.
    Yagi N; Ohta N; Matsuo T; Tanaka T; Terada Y; Kamasaka H; To-o K; Kometani T; Kuriki T
    J Synchrotron Radiat; 2009 May; 16(Pt 3):398-404. PubMed ID: 19395806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of scanning electron microscopy in studying enamel caries.
    Shellis RP; Hallsworth AS
    Scanning Microsc; 1987 Sep; 1(3):1109-23. PubMed ID: 3310203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dentinal carious lesion in three dimensions.
    Wong FS; Willmott NS; Davis GR
    Int J Paediatr Dent; 2006 Nov; 16(6):419-23. PubMed ID: 17014540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of crocodile teeth: correlation of composition, microstructure, and hardness.
    Enax J; Fabritius HO; Rack A; Prymak O; Raabe D; Epple M
    J Struct Biol; 2013 Nov; 184(2):155-63. PubMed ID: 24091039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchrotron x-ray microtomographic investigation of mineral concentrations at micrometre scale in sound and carious enamel.
    Dowker SE; Elliott JC; Davis GR; Wilson RM; Cloetens P
    Caries Res; 2004; 38(6):514-22. PubMed ID: 15528905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding nano-anatomy of healthy and carious human teeth: a prerequisite for nanodentistry.
    Gaiser S; Deyhle H; Bunk O; White SN; Müller B
    Biointerphases; 2012 Dec; 7(1-4):4. PubMed ID: 22589047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress and strain distribution in demineralized enamel: A micro-CT based finite element study.
    Neves AA; Coutinho E; Alves HD; de Assis JT
    Microsc Res Tech; 2015 Oct; 78(10):865-72. PubMed ID: 26240030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.