BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 23993959)

  • 1. Redox activation of Nrf2 & NF-κB: a double end sword?
    Buelna-Chontal M; Zazueta C
    Cell Signal; 2013 Dec; 25(12):2548-57. PubMed ID: 23993959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling.
    Yao H; Yang SR; Kode A; Rajendrasozhan S; Caito S; Adenuga D; Henry R; Edirisinghe I; Rahman I
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1151-5. PubMed ID: 17956299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross Talk in HEK293 Cells Between Nrf2, HIF, and NF-κB Activities upon Challenges with Redox Therapeutics Characterized with Single-Cell Resolution.
    Johansson K; Cebula M; Rengby O; Dreij K; Carlström KE; Sigmundsson K; Piehl F; Arnér ES
    Antioxid Redox Signal; 2017 Feb; 26(6):229-246. PubMed ID: 26415122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-regulating role of insulin: the essence of insulin effect.
    Wang X; Tao L; Hai CX
    Mol Cell Endocrinol; 2012 Feb; 349(2):111-27. PubMed ID: 21878367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus.
    Kabe Y; Ando K; Hirao S; Yoshida M; Handa H
    Antioxid Redox Signal; 2005; 7(3-4):395-403. PubMed ID: 15706086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway.
    Pantano C; Reynaert NL; van der Vliet A; Janssen-Heininger YM
    Antioxid Redox Signal; 2006; 8(9-10):1791-806. PubMed ID: 16987032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of isothiocyanates on nuclear accumulation of NF-kappaB, Nrf2, and thioredoxin in caco-2 cells.
    Jakubíková J; Sedlák J; Bod'o J; Bao Y
    J Agric Food Chem; 2006 Mar; 54(5):1656-62. PubMed ID: 16506816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethyl 3',4',5'-trimethoxythionocinnamate modulates NF-κB and Nrf2 transcription factors.
    Kumar S; Singh BK; Prasad AK; Parmar VS; Biswal S; Ghosh B
    Eur J Pharmacol; 2013 Jan; 700(1-3):32-41. PubMed ID: 23261968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of transcription factor nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) leads to dysregulation of immune functions, redox homeostasis, and intracellular signaling in dendritic cells.
    Yeang HXA; Hamdam JM; Al-Huseini LMA; Sethu S; Djouhri L; Walsh J; Kitteringham N; Park BK; Goldring CE; Sathish JG
    J Biol Chem; 2012 Mar; 287(13):10556-10564. PubMed ID: 22311972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation of nuclear post-translational modifications during NF-kappaB activation.
    Gloire G; Piette J
    Antioxid Redox Signal; 2009 Sep; 11(9):2209-22. PubMed ID: 19203223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EGCG inhibits Tat-induced LTR transactivation: role of Nrf2, AKT, AMPK signaling pathway.
    Zhang HS; Wu TC; Sang WW; Ruan Z
    Life Sci; 2012 May; 90(19-20):747-54. PubMed ID: 22480519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling.
    Gao L; Mann GE
    Cardiovasc Res; 2009 Apr; 82(1):9-20. PubMed ID: 19179352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor kappaB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent.
    Jing Y; Yang J; Wang Y; Li H; Chen Y; Hu Q; Shi G; Tang X; Yi J
    Free Radic Biol Med; 2006 Jun; 40(12):2183-97. PubMed ID: 16785032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple redox regulation in NF-kappaB transcription factor activation.
    Piette J; Piret B; Bonizzi G; Schoonbroodt S; Merville MP; Legrand-Poels S; Bours V
    Biol Chem; 1997 Nov; 378(11):1237-45. PubMed ID: 9426183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment.
    Fouani L; Kovacevic Z; Richardson DR
    Antioxid Redox Signal; 2019 Mar; 30(8):1096-1123. PubMed ID: 29161883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of NF-kappaB in normal rat kidney epithelial (NRK52E) cells is mediated via a redox-insensitive, calcium-dependent pathway.
    Woods JS; Ellis ME; Dieguez-Acuña FJ; Corral J
    Toxicol Appl Pharmacol; 1999 Feb; 154(3):219-27. PubMed ID: 9931281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-sensitive regulation of gene expression in human primary macrophages exposed to inorganic arsenic.
    Bourdonnay E; Morzadec C; Fardel O; Vernhet L
    J Cell Biochem; 2009 Jun; 107(3):537-47. PubMed ID: 19350554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation of LPS-induced apoptosis in NGF-differentiated PC12 cells via NF-κB pathway and regulation of cellular redox status by an oxazine derivative.
    Ansari N; Khodagholi F; Amini M; Shaerzadeh F
    Biochimie; 2011 May; 93(5):899-908. PubMed ID: 21295107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.