BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 23994214)

  • 1. Comparative evaluation of transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid and L-[methyl-¹¹C]methionine in human glioma cell lines.
    Ono M; Oka S; Okudaira H; Schuster DM; Goodman MM; Kawai K; Shirakami Y
    Brain Res; 2013 Oct; 1535():24-37. PubMed ID: 23994214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport mechanisms of trans-1-amino-3-fluoro[1-(14)C]cyclobutanecarboxylic acid in prostate cancer cells.
    Oka S; Okudaira H; Yoshida Y; Schuster DM; Goodman MM; Shirakami Y
    Nucl Med Biol; 2012 Jan; 39(1):109-19. PubMed ID: 21958853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer.
    Okudaira H; Shikano N; Nishii R; Miyagi T; Yoshimoto M; Kobayashi M; Ohe K; Nakanishi T; Tamai I; Namiki M; Kawai K
    J Nucl Med; 2011 May; 52(5):822-9. PubMed ID: 21536930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-L-methionine and magnetic resonance imaging for monitoring treatment response in gliomas.
    Sasajima T; Ono T; Shimada N; Doi Y; Oka S; Kanagawa M; Baden A; Mizoi K
    Nucl Med Biol; 2013 Aug; 40(6):808-15. PubMed ID: 23701701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose.
    Oka S; Okudaira H; Ono M; Schuster DM; Goodman MM; Kawai K; Shirakami Y
    Mol Imaging Biol; 2014 Jun; 16(3):322-9. PubMed ID: 24136390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine.
    Langen KJ; Mühlensiepen H; Holschbach M; Hautzel H; Jansen P; Coenen HH
    J Nucl Med; 2000 Jul; 41(7):1250-5. PubMed ID: 10914918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [(14)C]Fluciclovine (alias anti-[(14)C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells.
    Ono M; Oka S; Okudaira H; Nakanishi T; Mizokami A; Kobayashi M; Schuster DM; Goodman MM; Shirakami Y; Kawai K
    Nucl Med Biol; 2015 Nov; 42(11):887-92. PubMed ID: 26278491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in accumulation and the transport mechanism of l- and d-methionine in high- and low-grade human glioma cells.
    Kobayashi M; Mizutani A; Nishi K; Nakajima S; Shikano N; Nishii R; Fukuchi K; Kawai K
    Nucl Med Biol; 2017 Jan; 44():78-82. PubMed ID: 27835793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid accumulation in low-grade glioma in chemically induced rat models: PET and autoradiography compared with morphological images and histopathological findings.
    Doi Y; Kanagawa M; Maya Y; Tanaka A; Oka S; Nakata N; Toyama M; Matsumoto H; Shirakami Y
    Nucl Med Biol; 2015 Aug; 42(8):664-72. PubMed ID: 26022202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Amino Acid/Drug Transporters for Renal Transport of [
    Ono M; Baden A; Okudaira H; Kobayashi M; Kawai K; Oka S; Yoshimura H
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27754421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analyses of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid transport in Xenopus laevis oocytes expressing human ASCT2 and SNAT2.
    Okudaira H; Nakanishi T; Oka S; Kobayashi M; Tamagami H; Schuster DM; Goodman MM; Shirakami Y; Tamai I; Kawai K
    Nucl Med Biol; 2013 Jul; 40(5):670-5. PubMed ID: 23647854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid in prostate cancer due to androgen-induced expression of amino acid transporters.
    Okudaira H; Oka S; Ono M; Nakanishi T; Schuster DM; Kobayashi M; Goodman MM; Tamai I; Kawai K; Shirakami Y
    Mol Imaging Biol; 2014 Dec; 16(6):756-64. PubMed ID: 24943499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predominant contribution of L-type amino acid transporter to 4-borono-2-(18)F-fluoro-phenylalanine uptake in human glioblastoma cells.
    Yoshimoto M; Kurihara H; Honda N; Kawai K; Ohe K; Fujii H; Itami J; Arai Y
    Nucl Med Biol; 2013 Jul; 40(5):625-9. PubMed ID: 23557719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid PET tracers are reliable markers of treatment responses to single-agent or combination therapies including temozolomide, interferon-β, and/or bevacizumab for glioblastoma.
    Ono T; Sasajima T; Doi Y; Oka S; Ono M; Kanagawa M; Baden A; Mizoi K; Shimizu H
    Nucl Med Biol; 2015 Jul; 42(7):598-607. PubMed ID: 25892210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnosis of Brain Tumors Using Amino Acid Transport PET Imaging with
    Tsuyuguchi N; Terakawa Y; Uda T; Nakajo K; Kanemura Y
    Asia Ocean J Nucl Med Biol; 2017; 5(2):85-94. PubMed ID: 28660218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between [
    Kagawa S; Nishii R; Higashi T; Yamauchi H; Ogawa E; Okudaira H; Kobayashi M; Yoshimoto M; Shikano N; Kawai K
    Nucl Med Biol; 2017 Jun; 49():8-15. PubMed ID: 28284101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PET imaging of hepatocellular carcinoma with anti-1-amino-3-[
    Sergeeva O; Zhang Y; Kenyon JD; Miller-Atkins GA; Wu C; Iyer R; Sexton S; Wojtylak P; Awadallah A; Xin W; Chan ER; O'Donnel JK; Lee Z
    EJNMMI Res; 2019 May; 9(1):47. PubMed ID: 31119488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of 3-fluoro-L-α-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: a cause of the tumor uptake in PET.
    Wiriyasermkul P; Nagamori S; Tominaga H; Oriuchi N; Kaira K; Nakao H; Kitashoji T; Ohgaki R; Tanaka H; Endou H; Endo K; Sakurai H; Kanai Y
    J Nucl Med; 2012 Aug; 53(8):1253-61. PubMed ID: 22743251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl-[11C]- l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma.
    Kracht LW; Friese M; Herholz K; Schroeder R; Bauer B; Jacobs A; Heiss WD
    Eur J Nucl Med Mol Imaging; 2003 Jun; 30(6):868-73. PubMed ID: 12692687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase IIa clinical study of [
    Kondo A; Ishii H; Aoki S; Suzuki M; Nagasawa H; Kubota K; Minamimoto R; Arakawa A; Tominaga M; Arai H
    Ann Nucl Med; 2016 Nov; 30(9):608-618. PubMed ID: 27418267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.