BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

690 related articles for article (PubMed ID: 23994266)

  • 1. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter.
    Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC
    J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.
    Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC
    Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine sulfoximine supplementation enhances productivity in GS-CHOK1SV cell lines through glutathione biosynthesis.
    Feary M; Racher AJ; Young RJ; Smales CM
    Biotechnol Prog; 2017 Jan; 33(1):17-25. PubMed ID: 27689785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.
    Rajendra Y; Hougland MD; Alam R; Morehead TA; Barnard GC
    Biotechnol Bioeng; 2015 May; 112(5):977-86. PubMed ID: 25502369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics.
    Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z
    MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression.
    Daramola O; Stevenson J; Dean G; Hatton D; Pettman G; Holmes W; Field R
    Biotechnol Prog; 2014; 30(1):132-41. PubMed ID: 24106171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification.
    Jun SC; Kim MS; Hong HJ; Lee GM
    Biotechnol Prog; 2006; 22(3):770-80. PubMed ID: 16739961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins.
    Dorai H; Corisdeo S; Ellis D; Kinney C; Chomo M; Hawley-Nelson P; Moore G; Betenbaugh MJ; Ganguly S
    Biotechnol Bioeng; 2012 Apr; 109(4):1016-30. PubMed ID: 22068683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of glutamine synthetase selection marker improves product titer and reduces glutamine overflow in Chinese hamster ovary cells.
    Sacco SA; Tuckowski AM; Trenary I; Kraft L; Betenbaugh MJ; Young JD; Smith KD
    Biotechnol Bioeng; 2022 Jul; 119(7):1712-1727. PubMed ID: 35312045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the mechanism for increased protein expression via transcription potency reduction of the selection marker.
    Yang B; Zhou J; Zhao H; Wang A; Lei Y; Xie Q; Xiong S
    Bioprocess Biosyst Eng; 2019 May; 42(5):799-806. PubMed ID: 30730009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.
    Yu DY; Noh SM; Lee GM
    J Biotechnol; 2016 Aug; 231():136-140. PubMed ID: 27288593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies.
    Noh SM; Shin S; Lee GM
    Sci Rep; 2018 Mar; 8(1):5361. PubMed ID: 29599455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An attempt to add biological functions by genetic engineering in order to produce high-performance bioreactor cells for hybrid artificial liver: transfection of glutamine synthetase into Chinese hamster ovary (CHO) cell.
    Enosawa S; Suzuki S; Fujino M; Amemiya H; Omasa T; Urayama S; Tanimura N; Suga K
    Cell Transplant; 1997; 6(5):537-40. PubMed ID: 9331509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology.
    Kennard ML; Goosney DL; Monteith D; Roe S; Fischer D; Mott J
    Biotechnol Bioeng; 2009 Oct; 104(3):526-39. PubMed ID: 19544304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the efficiency and quality in developing a new CHO host cell line.
    Huhn SC; Ou Y; Tang X; Jiang B; Liu R; Lin H; Du Z
    Biotechnol Prog; 2021 Sep; 37(5):e3185. PubMed ID: 34142466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid establishment of high-producing cell lines using dicistronic vectors with glutamine synthetase as the selection marker.
    Pu H; Cashion LM; Kretschmer PJ; Liu Z
    Mol Biotechnol; 1998 Aug; 10(1):17-25. PubMed ID: 9779420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak promoters to drive selection marker expression: Improvement of cell line development process for therapeutic protein production in CHO-K1 cells.
    Grindes L; Florimond C; Ribault S; Raymond C; Dieryck W; Joucla G; Corbin C
    J Biotechnol; 2023 Jun; 369():43-54. PubMed ID: 37149043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.
    Nakamura T; Omasa T
    J Biosci Bioeng; 2015 Sep; 120(3):323-9. PubMed ID: 25792187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of transfection and high-producer screening protocols for the CHOK1SV cell system.
    de la Cruz Edmonds MC; Tellers M; Chan C; Salmon P; Robinson DK; Markusen J
    Mol Biotechnol; 2006 Oct; 34(2):179-90. PubMed ID: 17172663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Construction of an anti-apoptosis CHO cell line for biopharmaceutical production].
    Lai DZ; Fu L; Yu CM; Qi LQ; Weng SJ; Yu T; Wang HT; Chen W
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):322-6. PubMed ID: 15969015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.