These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 23994307)
1. Ethanol fermentation by xylose-assimilating Saccharomyces cerevisiae using sugars in a rice straw liquid hydrolysate concentrated by nanofiltration. Sasaki K; Sasaki D; Sakihama Y; Teramura H; Yamada R; Hasunuma T; Ogino C; Kondo A Bioresour Technol; 2013 Nov; 147():84-88. PubMed ID: 23994307 [TBL] [Abstract][Full Text] [Related]
2. Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae. Sasaki K; Tsuge Y; Sasaki D; Hasunuma T; Sakamoto T; Sakihama Y; Ogino C; Kondo A Bioresour Technol; 2014 Oct; 169():380-386. PubMed ID: 25064336 [TBL] [Abstract][Full Text] [Related]
3. Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw. Shibuya M; Sasaki K; Tanaka Y; Yasukawa M; Takahashi T; Kondo A; Matsuyama H Bioresour Technol; 2017 Jul; 235():405-410. PubMed ID: 28388525 [TBL] [Abstract][Full Text] [Related]
4. Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. Abbi M; Kuhad RC; Singh A J Ind Microbiol; 1996 Jul; 17(1):20-3. PubMed ID: 8987687 [TBL] [Abstract][Full Text] [Related]
5. Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae. Sasaki K; Tsuge Y; Sasaki D; Teramura H; Inokuma K; Hasunuma T; Ogino C; Kondo A Bioresour Technol; 2015 Jun; 185():263-8. PubMed ID: 25776893 [TBL] [Abstract][Full Text] [Related]
6. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184 [TBL] [Abstract][Full Text] [Related]
7. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
8. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the performance of eight recombinant strains of xylose-fermenting Saccharomyces cerevisiae as to bioethanol production from rice straw enzymatic hydrolyzate. Fujii T; Matsushika A; Goshima T; Murakami K; Yano S Biosci Biotechnol Biochem; 2013; 77(7):1579-82. PubMed ID: 23832338 [TBL] [Abstract][Full Text] [Related]
10. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y; Park JY; Shiroma R; Tokuyasu K J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557 [TBL] [Abstract][Full Text] [Related]
11. Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes. Maiti SK; Lukka Thuyavan Y; Singh S; Oberoi HS; Agarwal GP Bioresour Technol; 2012 Jun; 114():419-27. PubMed ID: 22494575 [TBL] [Abstract][Full Text] [Related]
12. Efficient simultaneous saccharification and fermentation of agricultural residues by Saccharomyces cerevisiae and Candida shehatae. The D-xylose fermenting yeast. Palnitkar SS; Lachke AH Appl Biochem Biotechnol; 1990 Nov; 26(2):151-8. PubMed ID: 2091527 [TBL] [Abstract][Full Text] [Related]
13. Sucrose purification and repeated ethanol production from sugars remaining in sweet sorghum juice subjected to a membrane separation process. Sasaki K; Tsuge Y; Kawaguchi H; Yasukawa M; Sasaki D; Sazuka T; Kamio E; Ogino C; Matsuyama H; Kondo A Appl Microbiol Biotechnol; 2017 Aug; 101(15):6007-6014. PubMed ID: 28488116 [TBL] [Abstract][Full Text] [Related]
14. A viable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae. Yuan D; Rao K; Varanasi S; Relue P Bioresour Technol; 2012 Aug; 117():92-8. PubMed ID: 22609719 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Ohgren K; Bengtsson O; Gorwa-Grauslund MF; Galbe M; Hahn-Hägerdal B; Zacchi G J Biotechnol; 2006 Dec; 126(4):488-98. PubMed ID: 16828190 [TBL] [Abstract][Full Text] [Related]
16. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
17. First- and second-generation integrated process for bioethanol production: Fermentation of molasses diluted with hemicellulose hydrolysate by recombinant Saccharomyces cerevisiae. de Oliveira Pereira I; Dos Santos ÂA; Guimarães NC; Lima CS; Zanella E; Matsushika A; Rabelo SC; Stambuk BU; Ienczak JL Biotechnol Bioeng; 2024 Apr; 121(4):1314-1324. PubMed ID: 38178588 [TBL] [Abstract][Full Text] [Related]
18. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Hasunuma T; Ismail KSK; Nambu Y; Kondo A J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856 [TBL] [Abstract][Full Text] [Related]
19. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Huang S; Liu T; Peng B; Geng A Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665 [TBL] [Abstract][Full Text] [Related]
20. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Lin TH; Huang CF; Guo GL; Hwang WS; Huang SL Bioresour Technol; 2012 Jul; 116():314-9. PubMed ID: 22537402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]