These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 23994307)
21. Pretreatment of rice straw using a butanone or an acetaldehyde dilute solution explosion for producing ethanol. Zhang J; Zhang WX; Yang J; Liu YH; Zhong X; Wu ZY; Kida K; Deng Y Appl Biochem Biotechnol; 2012 Apr; 166(7):1856-70. PubMed ID: 22371064 [TBL] [Abstract][Full Text] [Related]
22. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6(MUT) expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6. Jo SE; Seong YJ; Lee HS; Lee SM; Kim SJ; Park K; Park YC J Biotechnol; 2016 Jun; 227():72-78. PubMed ID: 27059482 [TBL] [Abstract][Full Text] [Related]
23. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A; Pereira F; Johansson B; Domingues L Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [TBL] [Abstract][Full Text] [Related]
24. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Lu Y; Warner R; Sedlak M; Ho N; Mosier NS Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980 [TBL] [Abstract][Full Text] [Related]
25. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K; Sanda T; Hasunuma T; Kondo A Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292 [TBL] [Abstract][Full Text] [Related]
26. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martín C; Marcet M; Almazán O; Jönsson LJ Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451 [TBL] [Abstract][Full Text] [Related]
27. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Zahed O; Jouzani GS; Abbasalizadeh S; Khodaiyan F; Tabatabaei M Folia Microbiol (Praha); 2016 May; 61(3):179-89. PubMed ID: 26354791 [TBL] [Abstract][Full Text] [Related]
28. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
29. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
30. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Wahlbom CF; Hahn-Hägerdal B Biotechnol Bioeng; 2002 Apr; 78(2):172-8. PubMed ID: 11870608 [TBL] [Abstract][Full Text] [Related]
31. Harnessing genetic diversity in Saccharomyces cerevisiae for fermentation of xylose in hydrolysates of alkaline hydrogen peroxide-pretreated biomass. Sato TK; Liu T; Parreiras LS; Williams DL; Wohlbach DJ; Bice BD; Ong IM; Breuer RJ; Qin L; Busalacchi D; Deshpande S; Daum C; Gasch AP; Hodge DB Appl Environ Microbiol; 2014 Jan; 80(2):540-54. PubMed ID: 24212571 [TBL] [Abstract][Full Text] [Related]
32. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Olofsson K; Rudolf A; Lidén G J Biotechnol; 2008 Mar; 134(1-2):112-20. PubMed ID: 18294716 [TBL] [Abstract][Full Text] [Related]
33. Steam pretreatment and fermentation of the straw material "Paja Brava" using simultaneous saccharification and co-fermentation. Carrasco C; Baudel H; Peñarrieta M; Solano C; Tejeda L; Roslander C; Galbe M; Lidén G J Biosci Bioeng; 2011 Feb; 111(2):167-74. PubMed ID: 21081285 [TBL] [Abstract][Full Text] [Related]
34. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Liu H; Liu K; Yan M; Xu L; Ouyang P Appl Biochem Biotechnol; 2011 Aug; 164(7):1150-9. PubMed ID: 21365181 [TBL] [Abstract][Full Text] [Related]
35. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related]
36. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850 [TBL] [Abstract][Full Text] [Related]
37. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. Erdei B; Frankó B; Galbe M; Zacchi G J Biotechnol; 2013 Mar; 164(1):50-8. PubMed ID: 23262129 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Chandrakant P; Bisaria VS Appl Microbiol Biotechnol; 2000 Mar; 53(3):301-9. PubMed ID: 10772470 [TBL] [Abstract][Full Text] [Related]
39. Separation of furfural from monosaccharides by nanofiltration. Qi B; Luo J; Chen X; Hang X; Wan Y Bioresour Technol; 2011 Jul; 102(14):7111-8. PubMed ID: 21570829 [TBL] [Abstract][Full Text] [Related]
40. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Katahira S; Mizuike A; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]